Rothlingshofer, Manuel’s team published research in Journal of the American Chemical Society in 133 | CAS: 186046-81-1

Journal of the American Chemical Society published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Formula: C39H35N5O8.

Rothlingshofer, Manuel published the artcileNucleic Acid-Templated Energy Transfer Leading to a Photorelease Reaction and its Application to a System Displaying a Nonlinear Response, Formula: C39H35N5O8, the publication is Journal of the American Chemical Society (2011), 133(45), 18110-18113, database is CAplus and MEDLINE.

The photocleavage of a nitrobenzyl-type linker (NPPOC) at 405 nm wavelength was enabled by nucleic acid-templated energy transfer from a sensitizer (thioxanthenone) to the linker. This strategy was used to release profluorescent rhodamine, which facilitated monitoring of the reaction via fluorescence measurement in a nonoverlapping window with the sensitizer/photocleavage reaction. The rate acceleration of the templated reaction was greater than 20-fold over the background reaction. The templated reaction was used in conjunction with strand displacement to design four-component systems that responded to an analyte (DNA). Programming a specific hierarchical relationship among the four components enabled the design of a system that responded first pos. and then neg. to increasing levels of an analyte.

Journal of the American Chemical Society published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Formula: C39H35N5O8.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Huang, Kuo-Ting’s team published research in ChemBioChem in 12 | CAS: 186046-81-1

ChemBioChem published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Huang, Kuo-Ting published the artcileCombinatorial Self-Assembly of Glycan Fragments into Microarrays, Synthetic Route of 186046-81-1, the publication is ChemBioChem (2011), 12(1), 56-60, database is CAplus and MEDLINE.

We have demonstrated that complex glycan arrays can be accessed through the combinatorial self assembly of PNA-encoded carbohydrate fragments. Although the use of DNA microarrays to sort carbohydrate-DNA conjugates had previously been reported, previous efforts were restricted to monosaccharides and did not explore a broad range of glycan structures, nor their combinatorial assembly. The cooperativity of the fragments in their interaction with carbohydrate-binding proteins was demonstrated with two different lectins. The binding profile showed the strongest interaction for discrete combinations of two fragments. Importantly, the PNA-tagged glycans can be readily prepared from native oligosaccharides obtained from natural or com. sources by conversion of the anomeric position into a thiol on a mg scale by a two- to three-step process. The simplicity of the protocols described should make glycan arrays more broadly accessible. Immobilization of glycans by hybridization offers a reliable approach by which to obtain a homogeneous distribution of ligands within a microarray spot and allows the use of microarrays with higher d. than accessible by contact printing, which is currently the standard practice. Last but not least, combinatorial self assembly of fragments on DNA microarrays should be broadly applicable beyond the glycan fragments described here.

ChemBioChem published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Hong, In Seok’s team published research in Bioorganic & Medicinal Chemistry Letters in 25 | CAS: 186046-81-1

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Computed Properties of 186046-81-1.

Hong, In Seok published the artcileSequence selective tagging of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) using PNAs, Computed Properties of 186046-81-1, the publication is Bioorganic & Medicinal Chemistry Letters (2015), 25(21), 4918-4921, database is CAplus and MEDLINE.

8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is a commonly formed DNA lesion that is useful as a biomarker for oxidative stress. Methods for detecting 8-oxodGuo at specific positions within DNA could be useful for correlating DNA damage with mutational hotspots and repair enzyme accessibility. We describe a method for covalently linking (‘tagging’) peptide nucleic acids (PNAs) containing terminal nucleophiles under oxidative conditions to 8-oxodGuo at specific sites within DNA. Several nucleophiles were examined and the ε-amine of lysine was selected for further studies. As little as 10 fmol of 8-oxodGuo were detected by gel shift using 32P-labeled target DNA and no tagging of dG at the same site or 8-oxodGuo at a distal site was detected when potassium ferricyanide was used as oxidant in substrates as long as 221 bp.

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Computed Properties of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 186046-81-1

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Erben, Anne published the artcileDNA-Triggered Synthesis and Bioactivity of Proapoptotic Peptides, Quality Control of 186046-81-1, the publication is Angewandte Chemie, International Edition (2011), 50(12), 2828-2832, S2828/1-S2828/17, database is CAplus and MEDLINE.

Diseases are frequently caused by changes in the genetic infrastructure. In such cases, the disordered state of a diseased cell is encoded in the DNA and reflected in the level and sequence of the expressed RNA mols. The information obtained from nucleic acids may be used to direct mol. therapies only to diseased cells and tissues. In a fascinating approach, disease-specific nucleic acid sequences could be hijacked to trigger the formation or release of drug mols. Herein a reaction system is introduced in which the sequence information of an unstructured DNA template is used to trigger the transfer of an aminoacyl group from a donating thioester-modified peptide-nucleic acid (PNA) conjugate to an acceptor peptidyl-PNA conjugate. It is demonstrated that the template can act as a catalyst which instructs the formation of many product mols. per template mol. The formed peptide-PNA conjugate was designed to interfere with the protein-protein interactions between caspase-9, a protease involved in the initiation of programmed cell death (apoptosis), and the X-linked inhibitor of apoptosis protein XIAP. It is shown that the nucleic acid programmed peptide synthesis allows activation of caspase-9 and a downstream caspase.

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Bioorganic & Medicinal Chemistry Letters in 21 | CAS: 186046-81-1

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Erben, Anne published the artcileDNA-instructed acyl transfer reactions for the synthesis of bioactive peptides, SDS of cas: 186046-81-1, the publication is Bioorganic & Medicinal Chemistry Letters (2011), 21(17), 4993-4997, database is CAplus and MEDLINE.

The authors present a method which allows for the translation of nucleic acid information into the output of mols. that interfere with disease-related protein-protein interactions. The method draws upon a nucleic acid-templated reaction, in which adjacent binding of reactive conjugates triggers the transfer of an aminoacyl or peptidyl group from a donating thioester-linked PNA-peptide hybrid to a peptide-PNA acceptor. The authors evaluated the influence of conjugate structures on reactivity and sequence specificity. The DNA-triggered peptide synthesis proceeded sequence specifically and showed catalytic turnover in template. The affinity of the formed peptide conjugates for the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) is discussed.

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Agramunt, Jordi’s team published research in Journal of Organic Chemistry in 85 | CAS: 186046-81-1

Journal of Organic Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Agramunt, Jordi published the artcileInverse Electron-Demand Diels-Alder Bioconjugation Reactions Using 7-Oxanorbornenes as Dienophiles, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Journal of Organic Chemistry (2020), 85(10), 6593-6604, database is CAplus and MEDLINE.

Oligonucleotides, peptides, and peptide nucleic acids incorporating 7-oxanorbornene as a dienophile were reacted with tetrazines linked to either a peptide, D-biotin, BODIPY, or N-acetyl-D-galactosamine. The inverse electron-demand Diels-Alder (IEDDA) cycloaddition, which was performed overnight at 37°C, in all cases furnished the target conjugate in good yields. IEDDA reactions with 7-oxanorbornenes produce a lower number of stereoisomers than that of IEDDA cycloadditions with other dienophiles.

Journal of Organic Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Sosniak, Anna M.’s team published research in Organic & Biomolecular Chemistry in 7 | CAS: 186046-81-1

Organic & Biomolecular Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H22OSi, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Sosniak, Anna M. published the artcileThermal melting studies of alkyne- and ferrocene-containing PNA bioconjugates, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Organic & Biomolecular Chemistry (2009), 7(23), 4992-5000, database is CAplus and MEDLINE.

The preparation of new metal-containing peptide nucleic acids (PNAs) is currently a field of research intensively studied for various purposes, such as DNA biosensors. The role played by the metal center, notably on the stability of the PNA·DNA hybrid, is obviously crucial, but has not yet been fully investigated. In this work, UV-Vis spectroscopic measurements of solutions of DNA·PNA hybrids, whose 11/12-mer PNA oligomers contained either alkynyl PNA monomer I or ferrocene-containing PNA monomer II, were carried out to determine the effect of these monomers on the thermal stability of the hybrids (PNA = H-Gly-X-gggtc-Y-agctt-X-Lys-NH2; X, Y = I, II, blank position). Supplementary CD spectroscopic measurements were performed to gain insight into the structures of the PNA·DNA duplexes formed. The effect of both modified monomers was found to depend on their actual positions within the PNA sequences. Insertions at the N- or C-termini of a PNA oligomer did not change the melting temperatures (Tm values of about 72°) of the DNA·PNA hybrids significantly. Insertion of monomers I or II in the middle of a PNA sequence induced a substantial decrease in the Tm of the hybrids (by about 23°) when bound to the same DNA oligomer. Interestingly, it was found that the type of modification, namely alkyne or ferrocene, did not significantly influence the Tm values in these cases. However, the thermal stability of hybrids with the DNA oligomers containing one to four addnl. thymines and the PNA oligomers containing the ferrocene moiety in its middle, varied significantly with the number of thymines added compared to its alkyne analogs (ΔTm up to -13°). The presence of the ferrocene moiety induced a significant decrease in thermal stability of the hybrids, probably due to its bulkiness. In order to assess the effect of PNA backbone rigidity on the stability of DNA·PNA hybrids, PNA oligomers with an internal amino acid, propargylglycine (Pgl) or the dipeptide glycine-propargylglycine (Gly-Pgl), were synthesized. It was assumed that the orientation of the alkyne moiety in the Pgl-containing PNA sequence is not identical to an alkyne-containing PNA sequence, as a significantly higher Tm value (ΔTm = +10°) was measured. It is anticipated that the alkyne moiety in Pgl is not facing the DNA base and therefore does not disturb as much the neighboring nucleobases and base-stacking of the complementary DNA, in contrast to the alkyne moiety of I. Interestingly, no significant differences in the thermal stability of the hybrids was observed between Pgl-containing and dipeptide-containing PNA oligomers, although the former contracts the PNA backbone by three atoms.

Organic & Biomolecular Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H22OSi, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Husken, Nina’s team published research in Bioconjugate Chemistry in 20 | CAS: 186046-81-1

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, HPLC of Formula: 186046-81-1.

Husken, Nina published the artcile“Four-Potential” Ferrocene Labeling of PNA Oligomers via Click Chemistry, HPLC of Formula: 186046-81-1, the publication is Bioconjugate Chemistry (2009), 20(8), 1578-1586, database is CAplus and MEDLINE.

The scope of the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (CuAAC, click chem.) as a key reaction for the conjugation of ferrocene derivatives to N-terminal functionalized PNA oligomers is explored herein (PNA: peptide nucleic acid). The facile solid-phase synthesis of N-terminal azide or alkyne-functionalized PNA oligomer precursors and their cycloaddition with azidoferrocene, ethynylferrocene, and N-(3-ethylpent-1-yn-3-yl)ferrocene-carboxamide (DEPA-ferrocene) on the solid phase are presented. While the click reaction with azidomethylferrocene worked equally well, the ferrocenylmethyl group is lost from the conjugate upon acid cleavage. However, the desired product was obtained via a post-SPPS conversion of the alkyne-PNA oligomer with azidomethylferrocene in solution The synthesis of all ferrocene-PNA conjugates (trimer t3-PNA, 3, 4, 5, 6; 12mer PNA, 10 – t c t a c a a g a c t c, 11 – t c t a c c g t a c t c) succeeded with excellent yields and purities, as determined by mass spectrometry and HPLC. Electrochem. studies of the trimer Fc-PNA conjugates 3, 4, 5, and 6 with four different ferrocene moieties revealed quasi-reversible redox processes of the ferrocenyl redox couple Fc0/+ and electrochem. half-wave potentials in a range of E1/2 = -20 mV to +270 mV vs FcH0/+ (Fc: ferrocenyl, C10H9Fe). The observed potential differences ΔE1/2min are always greater than 60 mV for any given pair of Fc-PNA conjugates, thus allowing a reliable differentiation with sensitive electrochem. methods like e.g. square wave voltammetry (SWV). This is the electrochem. equivalent of “four-color” detection and is hence denoted “four-potential” labeling. Preparation and electrochem. investigation of the set of four structurally different and electrochem. distinguishable ferrocenyl groups conjugated to PNA oligomers, as exemplified by the conjugates 3, 4, 5, and 6, demonstrates the scope of the azide/alkyne cycloaddition for the labeling of PNA with electrochem. active ferrocenyl groups. Furthermore, it provides a PNA-based system for the electrochem. detection of single-nucleotide polymorphism (SNP) in DNA/RNA.

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, HPLC of Formula: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Chantell, Christina A.’s team published research in American Biotechnology Laboratory in 27 | CAS: 186046-81-1

American Biotechnology Laboratory published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Chantell, Christina A. published the artcileLow-cost, automated synthesis of a PNA-peptide conjugate on a peptide synthesizer, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is American Biotechnology Laboratory (2009), 27(8), 8-10, database is CAplus.

Two peptide nucleic acid (PNA) sequences, one containing a lysine residue at the C-terminus and the other containing a peptide analog of LH-releasing hormone, were synthesized in an automated peptide synthesizer. The PNA sequence was constructed from protected monomers, Fmoc-A(Bhoc)aeg-OH, Fmoc-C(Bhoc)aeg-OH, Fmoc-G(Bhoc)aeg-OH and Fmoc-T-aeg-OH, which were coupled to Fmoc-Lys(Boc)-Wang resin using HATU as a coupling reagent. This work demonstrated the successful automated synthesis of a PNA sequence and a PNA-peptide conjugate on “Prelude” automated peptide synthesizer which enabled minimizing overall consumption and costs.

American Biotechnology Laboratory published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Chu, Te-Wei’s team published research in Journal of Controlled Release in 220 | CAS: 186046-81-1

Journal of Controlled Release published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Chu, Te-Wei published the artcileHybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation, Quality Control of 186046-81-1, the publication is Journal of Controlled Release (2015), 220(Part_B), 608-616, database is CAplus and MEDLINE.

This work presents a new concept in hybrid hydrogel design. Synthetic water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) polymers grafted with multiple peptide nucleic acids (PNAs) are crosslinked upon addition of the linker DNA. The self-assembly is mediated by the PNA-DNA complexation, which results in the formation of hydrophilic polymer networks. We show that the hydrogels can be produced through two different types of complexations. Type I hydrogel is formed via the PNA/DNA double-helix hybridization. Type II hydrogel utilizes a unique “P-form” oligonucleotide triple-helix that comprises two PNA sequences and one DNA. Microrheol. studies confirm the resp. gelation processes and disclose a higher critical gelation concentration for the type I gel when compared to the type II design. SEM reveals the interconnected microporous structure of both types of hydrogels. Type I double-helix hydrogel exhibits larger pore sizes than type II triple-helix gel. The latter apparently contains denser structure and displays greater elasticity as well. The designed hybrid hydrogels have potential as novel biomaterials for pharmaceutical and biomedical applications.

Journal of Controlled Release published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia