Wancewicz, Edward V.’s team published research in Journal of Medicinal Chemistry in 53 | CAS: 169396-92-3

Journal of Medicinal Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H22OSi, Product Details of C26H26N4O7.

Wancewicz, Edward V. published the artcilePeptide Nucleic Acids conjugated to short basic peptides show improved pharmacokinetics and antisense activity in adipose tissue, Product Details of C26H26N4O7, the publication is Journal of Medicinal Chemistry (2010), 53(10), 3919-3926, database is CAplus and MEDLINE.

A peptide nucleic acid (PNA) targeting a splice junction of the murine PTEN primary transcript was covalently conjugated to various basic peptides. When systemically administered to healthy mice, the conjugates displayed sequence-specific alteration of PTEN mRNA splicing as well as inhibition of full length PTEN protein expression. Correlating activity with drug concentration in various tissues indicated strong tissue-dependence, with highest levels of activity observed in adipose tissue. While the presence of a peptide carrier was found to be crucial for efficient delivery to tissue, little difference was observed between the various peptides evaluated. A second PNA-conjugate targeting the murine insulin receptor primary transcript showed a similar activity profile, suggesting that short basic peptides can generally be used to effectively deliver peptide nucleic acids to adipose tissue.

Journal of Medicinal Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H22OSi, Product Details of C26H26N4O7.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Gaglione, Maria’s team published research in Molecules in 18 | CAS: 169396-92-3

Molecules published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Quality Control of 169396-92-3.

Gaglione, Maria published the artcileSynthesis and biological properties of caffeic acid-PNA dimers containing guanine, Quality Control of 169396-92-3, the publication is Molecules (2013), 9147-9162, database is CAplus and MEDLINE.

Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is endowed with high antioxidant activity. CA derivatives (such as amides) have gained a lot of attention due to their antioxidative, antitumor and antimicrobial properties as well as stable characteristics. Caffeoyl-peptide derivatives showed different antioxidant activity depending on the type and the sequence of amino acid used. For these reasons, the authors decided to combine CA with peptide nucleic acid (PNA) to test whether the new PNA-CA amide derivatives would result in an improvement or gain of CA biol. (i.e., antioxidant, cytotoxic, cytoprotective) properties. The authors performed the synthesis and characterization of seven dimer conjugates with various combinations of nucleic acid bases and focused NMR studies on the model compound ga-CA dimer. It was demonstrated that PNA dimers containing guanine conjugated to CA exhibited different biol. activities depending on composition and sequence of the nucleobases. One dimer (ag-CA) protected HepG2, SK-B-NE(2), and C6 cells from a cytotoxic dose of hydrogen peroxide (H2O2). The title compounds thus formed included a caffeic acid derivative (I). The synthesis of the target compound was achieved by an amidation of caffeic acid [(2E)-3-(3,4-dihydroxyphenyl)-2-propenoic acid] with N-[2-(2-Amino-1,6-dihydro-6-oxo-9H-purin-9-yl)acetyl]-N-[2-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino]ethyl]glycine.

Molecules published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Quality Control of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Ok, Tae-Dong’s team published research in Chemistry – An Asian Journal in 6 | CAS: 169396-92-3

Chemistry – An Asian Journal published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Ok, Tae-Dong published the artcileGNA/aegPNA Chimera Loaded with RNA Binding Preference, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Chemistry – An Asian Journal (2011), 6(8), 1996-1999, database is CAplus and MEDLINE.

The authors have found a very simple strategy to improve binding preference of aegPNA [aeg = N-(2-aminoethyl)glycine] to RNA/DNA. Inspired by the structure of the GNA (glycol nucleic acid) monomer, a highly simple chiral PNA monomer was designed. By incorporating a few chiral acyclic γ-amino acid mols. into the achiral aegPNA backbone, the authors were able to make a chimeric PNA (chiPNA) with better RNA selectivity as well as antiparallel selectivity. The authors feel, to the best of their knowledge, this is the simplest monomeric unit that induces aegPNA to discriminate between RNA and DNA. Finally, the authors demonstrate that the chip-based competition-binding assay is an alternative tool to the quant. anal. of binding selectivities of modified PNAs. The authors believe that chiPNAs will expand the utility of PNAs and find diverse applications related to RNA targets in the future.

Chemistry – An Asian Journal published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Peng, Xiaohua’s team published research in European Journal of Organic Chemistry in | CAS: 169396-92-3

European Journal of Organic Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Peng, Xiaohua published the artcileA Template-Mediated Click-Click Reaction: PNA-DNA, PNA-PNA (or Peptide) Ligation, and Single Nucleotide Discrimination, Category: pyrimidines, the publication is European Journal of Organic Chemistry (2010), 4194-4197, S4194/1-S4194/19, database is CAplus and MEDLINE.

A highly efficient chem. ligation was developed for quant. conjugation of PNA with DNA (PNA or peptide) by using the copper-catalyzed azide-alkyne cycloaddition reaction. Whereas PNAs with an alkyne at the C-terminus and an azide at the N-terminus have been used, an efficient click-click reaction occurs. The PNA click ligation is sequence specific and capable of single nucleotide discrimination.

European Journal of Organic Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Zengeya, Thomas’s team published research in Bioorganic & Medicinal Chemistry Letters in 21 | CAS: 169396-92-3

Bioorganic & Medicinal Chemistry Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C28H29NO4, SDS of cas: 169396-92-3.

Zengeya, Thomas published the artcilePNA containing isocytidine nucleobase: Synthesis and recognition of double helical RNA, SDS of cas: 169396-92-3, the publication is Bioorganic & Medicinal Chemistry Letters (2011), 21(7), 2121-2124, database is CAplus and MEDLINE.

Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target.

Bioorganic & Medicinal Chemistry Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C28H29NO4, SDS of cas: 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Liu, Li-Han’s team published research in ACS Macro Letters in 3 | CAS: 169396-92-3

ACS Macro Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Liu, Li-Han published the artcileSelf-Assembly of Hybridized Peptide Nucleic Acid Amphiphiles, Synthetic Route of 169396-92-3, the publication is ACS Macro Letters (2014), 3(5), 467-471, database is CAplus and MEDLINE.

In this report, a series of peptide nucleic acid amphiphiles (PNAAs) with hybridization properties were designed and synthesized. Driven by hydrophobic interaction, the hybridized PNAAs can form uniform micelles, the base stacking interaction from PNA segments further stabilized the micelles. The effects of hydrophobic alkyl chain length, structure of hydrophilic peptides, concentration, and pH on the self-assembly behavior of partly complementing PNAA duplexes were explored.

ACS Macro Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Malik, Shipra’s team published research in Journal of Controlled Release in 327 | CAS: 169396-92-3

Journal of Controlled Release published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Malik, Shipra published the artcileNext generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles, HPLC of Formula: 169396-92-3, the publication is Journal of Controlled Release (2020), 406-419, database is CAplus and MEDLINE.

Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional anal. also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.

Journal of Controlled Release published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Zhang, Zhaoda’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 169396-92-3

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C7H11N3O2, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Zhang, Zhaoda published the artcileHeteroditopic Binding of Magnetic Resonance Contrast Agents for Increased Relaxivity, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Angewandte Chemie, International Edition (2011), 50(11), 2621-2624, S2621/1-S2621/12, database is CAplus and MEDLINE.

We have shown that the small structural perturbation of incorporating a PNA (peptide nucleic acid) group into a fibrin-targeted contrast agent has a profound impact on relaxivity. The PNA moiety increases mol. weight by 3% but increases relaxivity by 50% compared to Gd2-Gly2-Pep-Gd2. The effect of the PNA group on relaxivity is the equivalent of synthesizing an agent with six GdDTPA moieties to achieve equivalent relaxivity. The PNA group has a modest pos. impact on fibrin binding and serves to rigidify the N-terminal portion of the mol. upon fibrin binding. Importantly, the PNA group does not increase non-specific protein binding. As a result, relaxivity of Gd2-T-Pep-Gd2 bound to fibrin is more than 50% increased compared to Gd2-Pep-Gd2 while the relaxivity of the two compounds in plasma is comparable. This should result in much greater clot blood contrast for Gd2-T-Pep-Gd2.

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C7H11N3O2, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Brodyagin, Nikita’s team published research in ACS Chemical Biology in 16 | CAS: 169396-92-3

ACS Chemical Biology published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Brodyagin, Nikita published the artcilePyridazine Nucleobase in Triplex-Forming PNA Improves Recognition of Cytosine Interruptions of Polypurine Tracts in RNA, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is ACS Chemical Biology (2021), 16(5), 872-881, database is CAplus and MEDLINE.

Sequence specific recognition of regulatory noncoding RNAs would open new possibilities for fundamental science and medicine. However, mol. recognition of such complex double-stranded RNA (dsRNA) structures remains a formidable problem. Recently, we discovered that peptide nucleic acids (PNAs) form an unusually stable and sequence-specific triple helix with dsRNA. Triplex-forming PNAs could become universal tools for recognition of noncoding dsRNAs but are limited by the requirement of polypurine tracts in target RNAs as only purines form stable Hoogsteen hydrogen bonded base triplets. Herein, we systematically surveyed simple nitrogen heterocycles PN as modified nucleobases for recognition of cytosine in PN*C-G triplets. We found that a 3-pyridazinyl nucleobase formed significantly more stable PN*C-G triplets than other heterocycles including the pyrimidin-2-one previously used by us and others for recognition of cytosine interruptions in polypurine tracts of PNA-dsRNA triplexes. Our results improve triple helical recognition of dsRNA and provide insights for future development of new nucleobases to expand the sequence scope of noncoding dsRNAs that can be targeted by triplex-forming PNAs.

ACS Chemical Biology published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Browne, Elisse C.’s team published research in Organic & Biomolecular Chemistry in 11 | CAS: 169396-92-3

Organic & Biomolecular Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Browne, Elisse C. published the artcileSynthesis and effects of conjugated tocopherol analogues on peptide nucleic acid hybridisation, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Organic & Biomolecular Chemistry (2013), 11(39), 6744-6750, database is CAplus and MEDLINE.

To the N-terminus of a nonamer peptide nucleic acid sequence, H-GCACGACTT-NH2, was attached a number of lipophilic conjugate mols. including three synthetic tocopherol (vitamin E) analogs. Studies were then undertaken with complementary PNA and DNA sequences to explore the effects of the conjugates using the techniques of UV monitored melting curves and isothermal calorimetry. Duplex formation was observed when the benzopyran group of vitamin E was conjugated. However, in the presence of the phytyl chain of vitamin E, binding was found to be temperature dependent.

Organic & Biomolecular Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia