Sources of common compounds: 591-12-8

Here is just a brief introduction to this compound(591-12-8)Product Details of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Product Details of 591-12-8. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Photo-Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. Author is Bunrit, Anon; Butburee, Teera; Liu, Meijiang; Huang, Zhipeng; Meeporn, Keerati; Phawa, Chaiyasit; Zhang, Jian; Kuboon, Sanchai; Liu, Huifang; Faungnawakij, Kajornsak; Wang, Feng.

Herein, we developed photo-thermo-dual catalytic strategies for the production of γ-valerolactone (GVL) from levulinic acid (LA) and its ester using platinum-loaded TiO2 as a dual-functional catalyst. Both catalytic systems were evaluated under mild reaction conditions. In the photocatalysis system, a base plays crucial roles in the conversion of LA and EL to GVL. The control experiments reveal that plausible mechanistic pathways of both systems proceed via the hydrogenation of the ketone group of LA to the corresponding alc. as a major intermediate followed by a subsequent cyclization step to GVL. This dual-functional catalyst provides alternative strategies for the conversion of LA and its ester into GVL, which could pave the way for biomass utilization in a more effective and practical manner.

Here is just a brief introduction to this compound(591-12-8)Product Details of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

What kind of challenge would you like to see in a future of compound: 591-12-8

Here is just a brief introduction to this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions, published in 2019, which mentions a compound: 591-12-8, Name is 5-Methylfuran-2(3H)-one, Molecular C5H6O2, Name: 5-Methylfuran-2(3H)-one.

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atm. boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochem. processing, affecting atm. composition In this study, the photochem. of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atm. simulation chamber EUPHORE. Photochem. loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, resp. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimol. rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a mol. elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochem. removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 min, compared to >3 h for reaction with OH.

Here is just a brief introduction to this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

An update on the compound challenge: 591-12-8

Here is just a brief introduction to this compound(591-12-8)Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Formula: C5H6O2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Online analysis of aerosol components of heated tobacco products by GC-MS.

In order to study the chem. composition of aerosols from heated tobacco products (HTPs) and to investigate the puff-by-puff release characteristics of aerosols from HTP samples, an online sampling device for HTP aerosols was developed by adopting a valve injection technique. Using this technique, HTP aerosols were directly introduced into gas chromatog.-mass spectrometry (GC-MS) by carrier gas (helium) through an inline heating transmission line without sample loss. The results showed that the online HTP aerosol anal. system had a stable performance and good reproducibility. The contents of acetone and 2-butanone determined in the aerosols of sample A by this method was in good accordance with the results reported by literature. With the proceeding of puffing, the releases of acetone and 2-butanone from the aerosols of sample B increased first and then decreased. This method is simple, efficient and suitable for the online anal. of the whole aerosols of HTPs and the puff-by-puff release characteristics of HTP aerosols.

Here is just a brief introduction to this compound(591-12-8)Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

What I Wish Everyone Knew About 591-12-8

Here is just a brief introduction to this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Name: 5-Methylfuran-2(3H)-one. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Conversion of Biomass-Derived Methyl Levulinate to Methyl Vinyl Ketone. Author is El Ouahabi, Fatima; Smit, Wietse; Angelici, Carlo; Polyakov, Mykola; Rodemerck, Uwe; Fischer, Christine; Kalevaru, V. Narayana; Wohlrab, Sebastian; Tin, Sergey; van Klink, Gerard P. M.; van der Waal, Jan C.; Orange, Francois; de Vries, Johannes G..

A high-throughput screening exercise testing 60 different catalysts resulted in 5 wt % Pt on sulfided carbon as the best catalyst in the conversion of bio-based Me levulinate (ML) to Me vinyl ketone (MVK) in a gas-phase continuous process. Up to 18% yield of MVK was obtained, but fast catalyst deactivation was observed For a better understanding of the reaction mechanism, the potential reaction intermediates [α-angelica lactone (α-AL), γ-valerolactone, Me Et ketone (MEK), and levulinic acid (LA)] were also fed as starting materials under the same reaction conditions as those used for ML. Of the different pathways possible, the route via AL seems to be the most likely route. Since the side product methanol led to the hydrogenation of MVK to MEK, LA is a better substrate in this reaction toward MVK at a medium reaction temperature Herein, we report the highest yield of MVK (>50%) from LA at 350°C. However, this knowledge of the reaction pathway via AL also opened up the possibility of a high-temperature conversion process of ML to MVK. It was found that ML could be converted to MVK in 71% selectivity at 600°C using 40% CaO on γ-Al2O3 as the catalyst. Here, the catalyst merely serves to accelerate the ring closure of ML to AL, which undergoes an electrocyclic reaction under extrusion of CO to form MVK.

Here is just a brief introduction to this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Interesting scientific research on 591-12-8

Here is just a brief introduction to this compound(591-12-8)COA of Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-Methylfuran-2(3H)-one( cas:591-12-8 ) is researched.COA of Formula: C5H6O2.Yanase, Daichi; Hara, Takayoshi; Sato, Fumiya; Yamada, Yasuhiro; Sato, Satoshi published the article 《Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni alloy catalysts》 about this compound( cas:591-12-8 ) in Applied Catalysis, A: General. Keywords: hydrogenation levulinate gamma valerolactone copper nickel alloy catalyst. Let’s learn more about this compound (cas:591-12-8).

Vapor-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was investigated over supported-type Cu-Ni/Al2O3 catalysts in H2 flow at 250°C. Ni-rich Cu-Ni/Al2O3 catalysts, typically 6 weight% Cu and 14 weight% Ni, achieved high LA conversion with high stability and high GVL selectivity. XRD analyses of the catalysts clarified that Cu-Ni alloy nanoparticles were produced on the alumina support by forming a solid solution of CuO-NiO. The Cu-Ni/Al2O3 catalyst showed the highest GVL productivity of 11.0 kg kg-1cat h-1 with a selectivity of 98.6%, although the catalyst was gradually deactivated with time on stream under high space velocity conditions. In the characterization of the used catalysts, the catalyst deactivation would be caused by the sintering of active Cu-Ni alloy nanoparticles, which could be induced by the cycle of the oxidation with H2O and the reduction with H2.

Here is just a brief introduction to this compound(591-12-8)COA of Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Fun Route: New Discovery of 591-12-8

Here is just a brief introduction to this compound(591-12-8)Reference of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Robichaux, Laura; Kendell, Shane published an article about the compound: 5-Methylfuran-2(3H)-one( cas:591-12-8,SMILESS:O=C1OC(C)=CC1 ).Reference of 5-Methylfuran-2(3H)-one. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:591-12-8) through the article.

A one-step direct alkylation method for synthesizing Bu levulinate from Bu alc. and furfuryl alc. has been explored. This process is carried out under reflux, at ∼ 120 °C for 2 h and utilizes a catalyst. Catalysts are based on phosphotungstic acid; the catalysts are modified via cation exchange, producing several cesium, copper and silver based phosphotungstates. Of these, the greatest activity and selectivity towards Bu levulinate was achieved over the Cu0.5H2[PW12O40] catalyst, with 100% conversion and a Bu levulinate selectivity of 69%. Various side reactions are also observed, with products that may also be suitable for biofuel applications. A detailed product anal. has been performed, and likely reaction schemes for these products have been determined Overall, these results demonstrate an efficient method for Bu levulinate production from biomass-derived sources.

Here is just a brief introduction to this compound(591-12-8)Reference of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Why Are Children Getting Addicted To 591-12-8

Here is just a brief introduction to this compound(591-12-8)Application of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about PON1 increases cellular DNA damage by lactone substrates, the main research direction is HepG2 cell PON1 DNA damage lactone; DNA damage; Lactones; PON1.Application of 591-12-8.

Paraoxonase 1 (PON1) is a high-d. lipoprotein (HDL)-associated enzyme that by hydrolyzing exogenous and endogenous substrates can provide protection against substrate induced toxicity. To investigate the extent to which PON1 provides protection against lactone induced DNA damage, DNA damage was measured in HepG2 cells using the neutral Comet assay following lactone treatment in the presence and absence of exogenous recombinant PON1 (rPON1). Low dose lactones (10 mM) caused little or no damage while high doses (100 mM) induced DNA damage in the following order of potency: α-angelica lactone > γ-butyrolactone > γ-hexalactone > γ-heptalactone > γ-octaclactone >γ-furanone > γ-valerolactone > γ-decalactone. Co-incubation of 100 mM lactone with rPON1, resulted in almost all cells showing extensive DNA damage, particularly with those lactones that decreased rPON1 activity by > 25%. DNA damage induced by a 1 h co-treatment with 10 mM α-angelica lactone and rPON1 was reduced when cells when incubated for a further 4 h in fresh medium suggesting break formation was due to induced DNA damage rather than apoptosis. These results suggest that in addition to its well-recognized detoxification effects, PON1 can increase genotoxicity potentially by hydrolyzing certain lactones to reactive intermediates that increase DNA damage via the formation of DNA adducts.

Here is just a brief introduction to this compound(591-12-8)Application of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 591-12-8

Here is just a brief introduction to this compound(591-12-8)Synthetic Route of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Synthesis of Chiral γ,γ-Disubstituted γ-Butenolides via Direct Vinylogous Aldol Reaction of Substituted Furanone Derivatives with Aldehydes, the main research direction is hydroxymethyl butenolide regioselective diastereoselective enantioselective preparation; stereoselective vinylogous aldol addition butenolide aldehyde sulfonamide squaramide catalyst.Synthetic Route of C5H6O2.

In the presence of a quinine-derived squaramide-sulfonamide, aldehydes RCHO (R = 4-ClC6H4, 3-ClC6H4, 2-ClC6H4, 4-BrC6H4, 4-F3CC6H4, Ph, 4-MeC6H4, 4-MeOC6H4, 1-naphthyl, 2-naphthyl, 2-furanyl, cyclohexyl, BuCH2) underwent regioselective, diastereoselective, and enantioselective vinylogous aldol addition reactions with γ-substituted β,γ-butenolides such as γ-angelica lactone to yield anti-(hydroxymethyl)butenolides such as I (R = 4-ClC6H4, 3-ClC6H4, 2-ClC6H4, 4-BrC6H4, 4-F3CC6H4, Ph, 4-MeC6H4, 4-MeOC6H4, 1-naphthyl, 2-naphthyl, 2-furanyl, cyclohexyl, BuCH2) in up to 95% ee.

Here is just a brief introduction to this compound(591-12-8)Synthetic Route of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Continuously updated synthesis method about 591-12-8

Here is just a brief introduction to this compound(591-12-8)Application In Synthesis of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5-Methylfuran-2(3H)-one(SMILESS: O=C1OC(C)=CC1,cas:591-12-8) is researched.Synthetic Route of C5H6O2. The article 《Asymmetric vinylogous Michael addition of 5-substituted-furan-2(3H)-ones to an α,β-unsaturated-γ-lactam》 in relation to this compound, is published in Organic & Biomolecular Chemistry. Let’s take a look at the latest research on this compound (cas:591-12-8).

The manuscript describes an utilization of 5-substituted-furan-2(3H)-ones as pronucleophiles in an asym. vinylogous Michael addition to an α,β-unsaturated-γ-lactam, thus leading to hybrid mols. possessing γ-lactam and butenolide structural motifs. The transformation utilizes two potentially vinylogous pronucleophiles and has been realized by simultaneous activation of both substrates by a bifunctional organocatalyst derived from a cinchona alkaloid. Reaction occurs in a highly enantio- and diastereoselective manner and the synthetic potential of the target products has been confirmed in stereoselective transformations.

Here is just a brief introduction to this compound(591-12-8)Application In Synthesis of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 591-12-8

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 591-12-8, is researched, Molecular C5H6O2, about The β-carotene-oxygen copolymer: Its relationship to apocarotenoids and β-carotene function, the main research direction is beta carotene oxygen copolymer preparation chem breakdown apocarotenoid preparation.Computed Properties of C5H6O2.

β-Carotene spontaneously copolymerizes with mol. oxygen to form a β-carotene-oxygen copolymer compound (“”copolymer””) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene-oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunol. activities, some of which are derived from the copolymer. However, the copolymer’s chem. makeup is unknown. A chem. breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. GC-MS anal. with mass-spectral library matching identified a min. of 45 structures, while more than 90 others remain unassigned. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are glyoxal and Me glyoxal dialdehydes, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration, Me glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given that the copolymer occurs naturally and is a major product of non-enzymic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites, the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals, the copolymer may serve as a systemic source of apocarotenoids.

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia