Downstream Synthetic Route Of 591-12-8

As far as I know, this compound(591-12-8)Recommanded Product: 591-12-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Recommanded Product: 591-12-8. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Fast pyrolysis as a tool for obtaining levoglucosan after pretreatment of biomass with niobium catalysts. Author is David, Geraldo Ferreira; Pereira, Sarah de Paiva Silva; Fernandes, Sergio Antonio; Cubides-Roman, Diana Catalina; Siqueira, Rogerio Krohling; Perez, Victor Haber; Lacerda, Valdemar Jr..

Levoglucosan (LGA) is a promising chem. platform derived from the pyrolysis of biomass that offers access to a variety of value-added products. We report an efficient route to produce LGA via the pretreatment of biomass with niobium compounds (oxalate, chloride and oxide) followed by fast pyrolysis coupled with gas chromatog.-mass spectrometry (Py-GC-MS) at temperatures of 350-600°C. Catalytic pretreatment reduces the quantity of lignin in the biomass, concentrates the cellulose and enhance LGA formation during fast pyrolysis. The pretreatment also removes alk. metals, preventing competitive side reactions. The effect of several parameters such as catalyst weight, time, temperature, and solvent, with the optimal pretreatment conditions determined to be 3 (weight%) niobium oxalate for 1 h at 23°C in water. Pretreatment increased the LGA yields by 6.40-fold for sugarcane bagasse, 4.15-fold for elephant grass, 4.13-fold for rice husk, 2.86-fold for coffee husk, and 1.86-fold for coconut husk as compared to the raw biomasses. These results indicate that biomass pretreatment using niobium derivates prior fast pyrolysis can be a promising technique for biomass thermochem. conversion in LGA and others important pyrolytic products.

As far as I know, this compound(591-12-8)Recommanded Product: 591-12-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Get Up to Speed Quickly on Emerging Topics: 591-12-8

As far as I know, this compound(591-12-8)Category: pyrimidines can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Karanwal, Neha; Verma, Deepak; Butolia, Paresh; Kim, Seung Min; Kim, Jaehoon published an article about the compound: 5-Methylfuran-2(3H)-one( cas:591-12-8,SMILESS:O=C1OC(C)=CC1 ).Category: pyrimidines. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:591-12-8) through the article.

The direct conversion of levulinic acid (LA) to valeric biofuel is highly promising for the development of biorefineries. Herein, LA is converted into valeric acid (VA) via one-pot direct cascade conversion over non-noble metal-based Nb-doped Cu on Zr-doped porous silica (Nb-Cu/ZPS). Under mild reaction conditions (150°C and 3.0 MPa H2 for 4 h), LA was completely converted into VA in high yield (99.8%) in aqueous medium with a high turnover frequency of 0.038 h-1. The Lewis acid sites of ZPS enhanced the adsorption of LA on the catalyst surface, and both the Lewis and Bronsted acidity associated with Nb2O5 and the metallic Cu0 sites promoted catalysis of the cascade hydrogenation, ring cyclization, ring-opening, and hydrogenation reactions to produce VA from LA. The bimetallic Nb-Cu/ZPS catalyst was also effective for the conversion of VA into various valeric esters in C1-C5 alc. media. The presence of Nb2O5 effectively suppressed metal leaching and coke formation, which are serious issues in the liquid-phase conversion of highly acidic LA during the reaction. The catalyst could be used for up to five consecutive cycles with marginal loss of activity, even without catalyst re-activation.

As far as I know, this compound(591-12-8)Category: pyrimidines can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 591-12-8

As far as I know, this compound(591-12-8)Recommanded Product: 591-12-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Hu, Yamin; Wang, Haiwen; Lakshmikandan, Manogaran; Wang, Shuang; Wang, Qian; He, Zhixia; Abomohra, Abd El-Fatah published the article 《Catalytic co-pyrolysis of seaweeds and cellulose using mixed ZSM-5 and MCM-41 for enhanced crude bio-oil production》. Keywords: Enteromorpha clathrata cellulose zeolite catalytic pyrolysis bio oil.They researched the compound: 5-Methylfuran-2(3H)-one( cas:591-12-8 ).Recommanded Product: 591-12-8. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:591-12-8) here.

Catalytic co-pyrolysis of seaweed Enteromorpha clathrata (EN) and cellulose (CEL) with catalysts ZSM-5 and MCM-41 was investigated by TG, Py-GC/MS and fixed-bed experiments The effects of temperature, catalysts, seaweed and cellulose ratio were examined on product yields distribution and bio-oil compositions by catalytic co-pyrolysis. The maximum bio-oil yield was recorded at the ratio of 1:1 (EN and CEL) with ZSM-5/MCM-41 at 500°C on co-pyrolytic process. The interaction of radicals and faster heat transfer rate of EN/CEL induces the synergistic effects with catalysts. The advantage of mesoporous mol. sieve along with acidic microporous zeolite of ZSM-5/MCM-41 improved the cracking, dehydration, decarbonylation, decarboxylation, dealkylation, aromatization, oligomerization and deamination reactions. The overall study revealed that the amount of N-containing compounds were decreased and significantly elevated bio-oil production with increased furans and aromatics

As far as I know, this compound(591-12-8)Recommanded Product: 591-12-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Can You Really Do Chemisty Experiments About 591-12-8

As far as I know, this compound(591-12-8)Synthetic Route of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Synthetic Route of C5H6O2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Catalyst-controlled regioselective nitrosocarbonyl aldol reaction of deconjugated butenolides. Author is Mallik, Sumitava; Bhajammanavar, Vinod; Baidya, Mahiuddin.

An unprecedented regiodivergent nitrosocarbonyl aldol reaction of γ-substituted deconjugated butenolides was described. While Lewis base catalyst quinidine leveraged O-selective nitrosocarbonyl aldol reaction exclusively at the γ-position of deconjugated butenolides to produce γ-substituted-butenolides I [R = Me, n-Pr, PhCH2, etc.; R1 = t-BuO, OCH2CH=CH2, PhCH2O, 4-MeC6H4, etc.], Lewis acid catalyst Cu(OTf)2 steered the competitive N-selective nitrosocarbonyl aldol reaction at the β-position, resulting in hetero-β,γ-difunctionalized-butenolides II [R2 = Me, Ph, 4-MeC6H4CH2, PhCH2; R3 = t-Bu, PhCH2, 1-naphthyl, etc.]. Both processes were amenable to a broad range of substrates and scalable, while the latter one represented a rare example of one-pot hetero-β,γ-difunctionalization of butenolide scaffolds.

As far as I know, this compound(591-12-8)Synthetic Route of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Something interesting about 591-12-8

As far as I know, this compound(591-12-8)Electric Literature of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 591-12-8, is researched, SMILESS is O=C1OC(C)=CC1, Molecular C5H6O2Journal, Catalysts called Rapid microwave-assisted polyol synthesis of TiO2-supported ruthenium catalysts for levulinic acid hydrogenation, Author is Howe, Alexander G. R.; Maunder, Rhodri; Morgan, David J.; Edwards, Jennifer K., the main research direction is titania ruthenium catalyst levulinic acid hydrogenation microwaveassisted polyol method.Electric Literature of C5H6O2.

One wt% Ru/TiO2 catalysts prepared by a one-pot microwave-assisted polyol method have been shown to be highly active for Levulinic acid hydrogenation to γ-Valerolactone. Preparation temperature, microwave irradiation time and choice of Ru precursor were found to have a significant effect on catalyst activity. In the case of Ru(acac)3-derived catalysts, increasing temperature and longer irradiation times increased catalyst activity to a maximum LA conversion of 69%. Conversely, for catalysts prepared using RuCl3, shorter preparation times and lower temperatures yielded more active catalysts, with a maximum LA conversion of 67%. Catalysts prepared using either precursor were found to contain highly dispersed nanoparticles <3 nm in diameter XPS anal. of the most and least active catalysts shows that the catalyst surface is covered in a layer of insoluble carbon with surface concentrations exceeding 40% in some cases. This can be attributed to the formation of large condensation oligomers from the reaction between the solvent, ethylene glycol and its oxidation products, as evidenced by the presence of C-O and C = O functionality on the catalyst surface. As far as I know, this compound(591-12-8)Electric Literature of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The origin of a common compound about 591-12-8

As far as I know, this compound(591-12-8)Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Formula: C5H6O2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions.

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atm. boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochem. processing, affecting atm. composition In this study, the photochem. of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atm. simulation chamber EUPHORE. Photochem. loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, resp. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimol. rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a mol. elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochem. removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 min, compared to >3 h for reaction with OH.

As far as I know, this compound(591-12-8)Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Analyzing the synthesis route of 591-12-8

As far as I know, this compound(591-12-8)Computed Properties of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Trimetallic Cu-Ni-Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium, the main research direction is trimetallic copper nickel zinc hydrogen ZSM5 catalyst levulinate pentanediol.Computed Properties of C5H6O2.

The one-pot direct conversion of levulinic acid (LA) to 1,4-pentanediol (1,4-PDO) was investigated over a trimetallic Zn-promoted Cu-Ni alloy on a H-ZSM-5 (Cu-Ni-Zn/H-ZSM-5) catalyst. Under mild reaction conditions at 130°C and a H2 pressure of 2.5 MPa for 6 h in an aqueous medium, almost complete conversion of LA to high-yield 1,4-PDO (93.4%) was achieved. The presence of the Zn promoter effectively suppressed the growth of the Cu-Ni alloy nanoparticles (NPs) on the surface of H-ZSM-5. Consequently, the reducibility of the Cu-Ni-Zn alloy was much higher than that of the Cu-Ni alloy. The numerous Lewis acid sites of the Cu-Ni-Zn/H-ZSM-5 catalyst enhanced the adsorption of LA, and the adsorbed LA was converted to γ-valerolactone (GVL) at the Bronsted acid sites of H-ZSM-5 followed by hydrogenation at the Cu-Ni alloy sites. Subsequently, the readsorption of GVL was activated at the Lewis acid sites and GVL underwent ring opening, followed by hydrogenation to form 1,4-PDO at the Cu-Ni alloy sites. The H2 spillover on the Zn-promoted Cu-Ni alloy NPs enhanced the hydrogenation of LA to 1,4-PDO. Because of the mild reaction conditions, the formation of coke and active site sintering was highly suppressed. In addition, metal leaching did not occur over the trimetallic Cu-Ni-Zn/H-ZSM-5 catalyst. Consequently, the Cu-Ni-Zn/H-ZSM-5 catalyst could be used for up to five cycles with minimal activity loss.

As far as I know, this compound(591-12-8)Computed Properties of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New explortion of 591-12-8

As far as I know, this compound(591-12-8)COA of Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5-Methylfuran-2(3H)-one(SMILESS: O=C1OC(C)=CC1,cas:591-12-8) is researched.Computed Properties of C5H6O2. The article 《Effect of processing and storage on the volatile profile of sugarcane honey: A four-year study》 in relation to this compound, is published in Food Chemistry. Let’s take a look at the latest research on this compound (cas:591-12-8).

Sugarcane honey (SCH) is a syrup from Madeira Island recognized by its unique and excellent aroma, associated to volatile organic compounds (VOCs) generated during the well-defined five stages of its traditional making process. The establishment of volatile profile throughout all SCH-making stages during four years, allowed the evaluation of the influence of each stage in the typical characterisitcs of SCH. One hundred eighthy seven VOCs were identified, being associated to several origins and formation pathways. VOCs formed during stage 1 and 2 were originate from raw material, and its oxidation (i.e. enzymic browning) and thermal degradation (i.e. lipid oxidation, Maillard reactions, Strecker degradation). In stage 3 and 4, the caramelization and melanoidin degradation also occurred, while in stage 5, the thermal degradation continues, followed by microbial activity. Chemometric anal. allowed to identify 35 VOCs as potential markers for processing control by the producers and as guarantee of the typicality and authenticity of SCH. Based on the obtained results, we propose for the first time an innovative schematic diagram explaining the potential reactions and pathways for VOCs formation during the different steps of the SCH production

As far as I know, this compound(591-12-8)COA of Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Share an extended knowledge of a compound : 591-12-8

As far as I know, this compound(591-12-8)Synthetic Route of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 591-12-8, is researched, SMILESS is O=C1OC(C)=CC1, Molecular C5H6O2Journal, Inorganic Chemistry Communications called Niobium based macromolecule preparation and its potential application in biomass derived levulinic acid esterification, Author is Anjali, Kaiprathu; Vijayan, Arya; Venkatesha, Naragalu J.; Sakthivel, Ayyamperumal, the main research direction is preparation niobium carboxyphenylporphyrin complex levulinate esterification; levulinate esterification niobium carboxyphenylporphyrin complex catalyst; niobium macromol biomass levulinate esterification.Synthetic Route of C5H6O2.

Niobium incorporated meso-tetra-(4-carboxyphenyl)-porphyrin (Nb-TCPP) was prepared for the first time and grafted through the axial position by the surface amine groups present on functionalized SBA-15 (SBA-AM). The synthesized TCPP ligand, Nb-TCPP complex, and the grafted Nb-TCPP-SBA-AM complex were thoroughly characterized by various anal. and spectroscopic techniques such as FTIR, UV-visible, DR UV-visible, CHN, 1H NMR, powder XRD, and N2 sorption studies. The catalytic activity of the homogeneous (Nb-TCPP) and the heterogenized (Nb-TCPP-SBA-AM) complex were explored for the esterification of levulinic acid. The studies revealed that Nb-TCPP and Nb-TCPP-SBA-AM showed comparatively good catalytic activity (74-80% conversion) for the esterification of levulinic acid using methanol under mild reaction conditions with the formation of Me levulinate and α-angelica lactone as the major products.

As far as I know, this compound(591-12-8)Synthetic Route of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Some scientific research about 591-12-8

As far as I know, this compound(591-12-8)COA of Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Co-pyrolytic mechanisms and products of textile dyeing sludge and durian shell in changing operational conditions, the main research direction is durian shell copyrolysis dyeing wastewater treatment sludge waste management.COA of Formula: C5H6O2.

Textile dyeing sludge (TDS) is a highly toxic solid waste whose co-pyrolysis can jointly achieve waste reduction and recovery of value-added products. This study aimed to fill the knowledge gaps about the co-pyrolysis mechanisms and products (gases and solids) and their dynamics in response to the atm. type, blend ratio, heating rate, temperature, and their interactions. The high temperature pyrolysis (>720 °C) in the CO2 atmosphere appeared as the best option for the waste reduction The (co-)pyrolysis in the CO2 atmosphere enhanced S-containing air pollutants, CO, and CH4 but reduced NOx. The interaction effect between TDS and durian shell (DS) residues promoted the productions of furan and acid compounds and inhibited the productions of aromatic, phenolic, and N-containing compounds The atmosphere type affected the type and strength of the reactions involved in the production of biochars. Our findings provide practical and new insights into the optimization of energy generation, product recovery, and emission control during the (co-)pyrolysis.

As far as I know, this compound(591-12-8)COA of Formula: C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia