Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor was written by Sweeny, Larissa;Liu, Zhiyong;Lancaster, William;Hart, Justin;Hartman, Yolanda E.;Rosenthal, Eben L.. And the article was included in Laryngoscope in 2012.Product Details of 219580-11-7 The following contents are mentioned in the article:
Head and neck squamous cell carcinoma (HNSCC) is a complex disease process involving interactions with carcinoma-associated fibroblasts and endothelial cells. We further investigated these relationships by suppressing stromal cell growth through the inhibition of fibroblast growth factor receptor (FGFR). HNSCC cell lines (FADU, OSC19, Cal27, SCC1, SCC5, SCC22A), fibroblast (HS27), and endothelial cells (human umbilical vascular endothelial cell) were cultured individually or in coculture. Proliferation was assessed following treatment with a range of physiol. concentrations of FGFR inhibitor PD173074. Mice bearing established HNSCC xenografts were treated with PD173074 (12 mg/kg), and tumor histol. was analyzed for stromal composition, proliferation (Ki67 staining), and apoptosis (TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling] staining). In vitro, inhibition of FGFR with PD173074 dramatically reduced proliferation of fibroblasts and endothelial cells compared to untreated controls. However, HNSCC cell proliferation was not affected by inhibition of FGFR. When cocultured with fibroblasts, HNSCC cells proliferation increased by 15% to 80% (P < .01). Furthermore, this fibroblast-enhanced tumor cell growth was suppressed by FGFR inhibition. Addnl., treatment of mice bearing HNSCC xenografts with PD173074 resulted in significant growth inhibition (P < .001). Addnl., those tumors from mice treated with PD173074 had a smaller stromal component, decreased proliferation, and increased apoptosis. Targeting the FGFR pathway in head and neck cancer acts through the stromal components to decrease HNSCC growth in vivo and in vitro. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Product Details of 219580-11-7).
1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Product Details of 219580-11-7
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia