The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Quality Control of 4595-59-9.
Simons, R. Thomas;Scott, Georgia E.;Kanegusuku, Anastasia Gant;Roizen, Jennifer L. research published 《 Photochemically Mediated Nickel-Catalyzed Synthesis of N-(Hetero)aryl Sulfamides》, the research content is summarized as follows. A general method for the N-arylation of sulfamides with aryl bromides is described. The protocol leverages a dual-catalytic system, with [Ir(ppy)2(dtbbpy)]PF6 as a photosensitizer, NiBr2•glyme as a precatalyst, and DBU as a base, and proceeds at room temperature under visible light irradiation Using these tactics, aryl boronic esters and aryl chlorides can be carried through the reaction untouched. The developed reactions efficiently engage simple bromoarenes and primary sulfamides in between 66% and quant. yields. For more challenging substrates, such as secondary sulfamides, reaction efficiency is documented. Thereby, these methods complement known Buchwald-Hartwig coupling methods for N-arylation of sulfamides. A general method for the N-arylation of sulfamides with aryl bromides is described. The protocol leverages a dual-catalytic system of Ni and a photoexcitable Ir complex and proceeds at room temperature under visible light irradiation Using these tactics, aryl boronic esters and aryl chlorides can be carried through the reaction untouched. Thereby, this method complements known Buchwald-Hartwig coupling methods for N-arylation of sulfamides.
4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Quality Control of 4595-59-9
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia