The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Category: pyrimidines.
Prusty, Namrata;Banjare, Shyam Kumar;Mohanty, Smruti Ranjan;Nanda, Tanmayee;Yadav, Komal;Ravikumar, Ponneri C. research published 《 Synthesis and Photophysical Study of Heteropolycyclic and Carbazole Motif: Nickel-Catalyzed Chelate-Assisted Cascade C-H Activations/Annulations》, the research content is summarized as follows. Nickel-catalyzed synthesis of polyarylcarbazoles I (R = H, Me; R1 = 4-F, 4-Cl, 4-Br, 5-Me, 5-OMe; R2 = C2H5, C6H5, 4-FC6H4, etc.) and II (R3 = 6-Br, 7-Cl, 8-Me, etc.) through sequential C-H bond activations has been described. Regioselective indole C2/C3 functionalization has been achieved in the presence of indoles III C7-H, which is quite challenging. In addition, this approach also gives easy access to building a heteropolycyclic motif through C6/C7 C-H functionalization of indolines IV. This methodol. is not limited to aromatic internal alkynes R2CCR2 as coupling partners; aliphatic alkynes have also shown good tolerance. Notably, during the optimization the catalytic enhancement with sodium iodide as an additive has been observed The photophys. properties of these highly conjugated mols. were obtained.
1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Category: pyrimidines
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia