The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Safety of 2-Chloropyrimidine.
Meyer, Cole C.;Dubey, Zachary J.;Krische, Michael J. research published 《 Enantioselective Iridium-Catalyzed Reductive Coupling of Dienes with Oxetanones and N-Acyl-Azetidinones Mediated by 2-Propanol》, the research content is summarized as follows. Cyclometallated iridium-PhanePhos complexes generated in situ from [Ir(cod)Cl]2 and (R)-PhanePhos catalyze 2-propanol-mediated reductive couplings of 2-substituted dienes with oxetanone and N-acyl-azetidinones to form branched homoallylic oxetanols and azetidinols with excellent control of regio- and enantioselectivity without C-C cleavage of the strained ring via enantiotopic π-facial selection of transient allyliridium nucleophiles. This work represents the first systematic study of enantioselective additions to sym. ketones.
1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia