Mendonca, Agnes team published research in Cytometry, Part A in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one.

Mendonca, Agnes;Sanchez, Oscar;Zhao, Han;Lin, Li;Min, Alan;Yuan, Chongli research published 《 Development and application of novel BiFC probes for cell sorting based on epigenetic modification》, the research content is summarized as follows. The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimol. fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia