Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Reference of 109-12-6.
Lu, Yu-Xiang;Song, Hai-Liang;Chand, Hameer;Wu, You;Yang, Yu-Li;Yang, Xiao-Li research published 《 New insights into the role of molecular structures on the fate and behavior of antibiotics in an osmotic membrane bioreactor》, the research content is summarized as follows. Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of mol. structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function anal., and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theor. foundation for the further development of OMBR technol. for highly efficient treatment of antibiotic wastewater.
109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Reference of 109-12-6
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia