The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. COA of Formula: C4H3ClN2.
Liu, Wei;Lavagnino, Marissa N.;Gould, Colin A.;Alcazar, Jesus;MacMillan, David W. C. research published 《 A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation》, the research content is summarized as follows. Bimol. homolytic substitution (SH2) is an open-shell mechanism that is implicated across a host of biochem. alkylation pathways. Surprisingly, however, this radical substitution manifold has not been generally deployed as a design element in synthetic C-C bond formation. Authors found that the SH2 mechanism can be leveraged to enable a biomimetic sp3-sp3 cross-coupling platform that furnishes quaternary sp3-carbon centers, a long-standing challenge in organic mol. construction. This heteroselective radical-radical coupling uses the capacity of iron porphyrin to readily distinguish between the SH2 bond-forming roles of open-shell primary and tertiary carbons, combined with photocatalysis to generate both radical classes simultaneously from widely abundant functional groups. Mechanistic studies confirm the intermediacy of a primary alkyl-Fe(III) species prior to coupling and provide evidence for the SH2 displacement pathway in the critical quaternary sp3-carbon bond formation step.
1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., COA of Formula: C4H3ClN2
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia