Let`s talk about compounds: 591-12-8

Here is just a brief introduction to this compound(591-12-8)Reference of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 591-12-8, is researched, Molecular C5H6O2, about One-pot conversion of furfural to gamma-valerolactone in the presence of multifunctional zirconium alizarin red S hybrid, the main research direction is furfural valerolactone zirconium alizarin red S.Reference of 5-Methylfuran-2(3H)-one.

A multifunctional Zr-containing catalyst (FM-Zr-ARS) was successfully synthesized by a modulated hydrothermal synthesis route. Systematic characterization results supported the presence of robust porous inorganic-organic frameworks stabilized by the strong coordination interaction of Zr4+ with oxygen-rich functional groups in Alizarin red S (ARS). Moreover, the -O-Zr-O- network in the FM-Zr-ARS structure formed a rich content of acid-base sites. In addition, the inherent sulfonic groups in ARS made the FM-Zr-ARS hybrids possess Bronsted acid sites. Therefore, under the synergistic catalysis of the multiple functional sites, FM-Zr-ARS showed remarkably high catalytic activity for γ-valerolactone (GVL) production from levulinate esters and furfural. Finally, 72.4% and 97.7% yields of GVL were obtained in the conversion of furfural and Et levulinate, resp., after 8 h of reaction at 433 K. On the basis of the role of different functional sites, a plausible catalytic mechanism was presented for the conversion of biomass-derived furfural to GVL.

Here is just a brief introduction to this compound(591-12-8)Reference of 5-Methylfuran-2(3H)-one, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia