Combined Inhibition of HER1/EGFR and RAC1 Results in a Synergistic Antiproliferative Effect on Established and Primary Cultured Human Glioblastoma Cells was written by Karpel-Massler, Georg;Westhoff, M.-Andrew;Zhou, Shaoxia;Nonnenmacher, Lisa;Dwucet, Annika;Kast, Richard E.;Bachem, Max G.;Wirtz, Christian R.;Debatin, Klaus-Michael;Halatsch, Marc-Eric. And the article was included in Molecular Cancer Therapeutics in 2013.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:
Glioblastoma is the most frequent brain tumor of glial origin in adults. With the best available standard-of-care, patients with this disease have a life expectancy of only approx. 15 mo after diagnosis. Because the EGF receptor (HER1/EGFR) is one of the most commonly dysregulated oncogenes in glioblastoma, HER1/EGFR-targeted agents, such as erlotinib, were expected to provide a therapeutic benefit. However, their application in the clin. setting failed. Seeking an explanation for this finding, we previously identified several candidate genes for resistance of human glioblastoma cell lines toward erlotinib. On the basis of this panel of genes, we aimed at identifying drugs that synergistically enhance the antiproliferative effect of erlotinib on established and primary glioblastoma cell lines. We found that NSC23766, an inhibitor of RAC1, enhanced the antineoplastic effects of erlotinib in U87MG, T98MG, and A172MG glioblastoma cell lines for the most part in a synergistic or at least in an additive manner. In addition, the synergistic antiproliferative effect of erlotinib and NSC23766 was confirmed in primary cultured cells, indicating a common underlying cellular and mol. mechanism in glioblastoma. Therefore, agents that suppress RAC1 activation may be useful therapeutic partners for erlotinib in a combined targeted treatment of glioblastoma. Mol Cancer Ther; 12(9); 1783-95. ©2013 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).
1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia