Peng, Cheng’s team published research in Bioorganic Chemistry in 110 | CAS: 56-05-3

Bioorganic Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Product Details of C4H3Cl2N3.

Peng, Cheng published the artcileInhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity, Product Details of C4H3Cl2N3, the publication is Bioorganic Chemistry (2021), 104813, database is CAplus and MEDLINE.

MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymic inhibition and thermodn. anal. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodn. anal. were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.

Bioorganic Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Product Details of C4H3Cl2N3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Liu, Li-Han’s team published research in ACS Macro Letters in 3 | CAS: 169396-92-3

ACS Macro Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Liu, Li-Han published the artcileSelf-Assembly of Hybridized Peptide Nucleic Acid Amphiphiles, Synthetic Route of 169396-92-3, the publication is ACS Macro Letters (2014), 3(5), 467-471, database is CAplus and MEDLINE.

In this report, a series of peptide nucleic acid amphiphiles (PNAAs) with hybridization properties were designed and synthesized. Driven by hydrophobic interaction, the hybridized PNAAs can form uniform micelles, the base stacking interaction from PNA segments further stabilized the micelles. The effects of hydrophobic alkyl chain length, structure of hydrophilic peptides, concentration, and pH on the self-assembly behavior of partly complementing PNAA duplexes were explored.

ACS Macro Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Liu, Li-Han’s team published research in ACS Macro Letters in 3 | CAS: 186046-81-1

ACS Macro Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, HPLC of Formula: 186046-81-1.

Liu, Li-Han published the artcileSelf-Assembly of Hybridized Peptide Nucleic Acid Amphiphiles, HPLC of Formula: 186046-81-1, the publication is ACS Macro Letters (2014), 3(5), 467-471, database is CAplus and MEDLINE.

In this report, a series of peptide nucleic acid amphiphiles (PNAAs) with hybridization properties were designed and synthesized. Driven by hydrophobic interaction, the hybridized PNAAs can form uniform micelles, the base stacking interaction from PNA segments further stabilized the micelles. The effects of hydrophobic alkyl chain length, structure of hydrophilic peptides, concentration, and pH on the self-assembly behavior of partly complementing PNAA duplexes were explored.

ACS Macro Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, HPLC of Formula: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Malik, Shipra’s team published research in Journal of Controlled Release in 327 | CAS: 169396-92-3

Journal of Controlled Release published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Malik, Shipra published the artcileNext generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles, HPLC of Formula: 169396-92-3, the publication is Journal of Controlled Release (2020), 406-419, database is CAplus and MEDLINE.

Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional anal. also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.

Journal of Controlled Release published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Malik, Shipra’s team published research in Journal of Controlled Release in 327 | CAS: 186046-81-1

Journal of Controlled Release published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Application In Synthesis of 186046-81-1.

Malik, Shipra published the artcileNext generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles, Application In Synthesis of 186046-81-1, the publication is Journal of Controlled Release (2020), 406-419, database is CAplus and MEDLINE.

Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional anal. also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.

Journal of Controlled Release published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Application In Synthesis of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Li, Nan’s team published research in Journal of the American Chemical Society in 133 | CAS: 56-05-3

Journal of the American Chemical Society published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Safety of 2-Amino-4,6-dichloropyrimidine.

Li, Nan published the artcileCopper-Free Sonogashira Cross-Coupling for Functionalization of Alkyne-Encoded Proteins in Aqueous Medium and in Bacterial Cells, Safety of 2-Amino-4,6-dichloropyrimidine, the publication is Journal of the American Chemical Society (2011), 133(39), 15316-15319, database is CAplus and MEDLINE.

Bioorthogonal reactions suitable for functionalization of genetically or metabolically encoded alkynes, for example, copper-catalyzed azide-alkyne cycloaddition reaction (“click chem.”), have provided chem. tools to study biomol. dynamics and function in living systems. Despite its prominence in organic synthesis, copper-free Sonogashira cross-coupling reaction suitable for biol. applications has not been reported. In this work, the authors report the discovery of a robust aminopyrimidine-palladium(II) complex for copper-free Sonogashira cross-coupling that enables selective functionalization of a homopropargylglycine (HPG)-encoded ubiquitin protein in aqueous medium. A wide range of aromatic groups including fluorophores and fluorinated aromatic compounds can be readily introduced into the HPG-containing ubiquitin under mild conditions with good to excellent yields. The suitability of this reaction for functionalization of HPG-encoded ubiquitin in Escherichia coli was also demonstrated. The high efficiency of this new catalytic system should greatly enhance the utility of Sonogashira cross-coupling in bioorthogonal chem.

Journal of the American Chemical Society published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Safety of 2-Amino-4,6-dichloropyrimidine.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Socher, Elke’s team published research in Organic & Biomolecular Chemistry in 10 | CAS: 186046-81-1

Organic & Biomolecular Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C12H14IN, COA of Formula: C39H35N5O8.

Socher, Elke published the artcileDual fluorophore PNA FIT-probes – extremely responsive and bright hybridization probes for the sensitive detection of DNA and RNA, COA of Formula: C39H35N5O8, the publication is Organic & Biomolecular Chemistry (2012), 10(36), 7363-7371, database is CAplus and MEDLINE.

Fluorescently labeled oligonucleotides are commonly employed as probes to detect specific DNA or RNA sequences in homogeneous solution Useful probes should experience strong increases in fluorescent emission upon hybridization with the target. Dual labeled peptide nucleic acid probes were developed which signal the presence of complementary DNA or RNA by up to 450-fold enhancements of fluorescence intensity. This enabled the very sensitive detection of a DNA target (40 pM LOD), which was detectable at less than 0.1% of the beacon concentration In contrast to existing DNA-based mol. beacons, this PNA-based method does not require a stem sequence to enforce dye-dye communication. Rather, the method relies on the energy transfer between a “smart” thiazole orange (TO) nucleotide, which requires formation of the probe-target complex in order to become fluorescent, and terminally appended acceptor dyes. To improve upon fluorescence responsiveness the energy pathways were dissected. Hydrophobic, spectrally mismatched dye combinations allowed significant (99.97%) decreases of background emission in the absence of a target. By contrast, spectral overlap between TO donor emission and acceptor excitation enabled extremely bright FRET signals. This and the large apparent Stokes shift (82 nm) suggests potential applications in the detection of specific RNA targets in biogenic matrixes without the need of sample pre-processing prior to detection.

Organic & Biomolecular Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C12H14IN, COA of Formula: C39H35N5O8.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Zhang, Zhaoda’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 169396-92-3

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C7H11N3O2, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Zhang, Zhaoda published the artcileHeteroditopic Binding of Magnetic Resonance Contrast Agents for Increased Relaxivity, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Angewandte Chemie, International Edition (2011), 50(11), 2621-2624, S2621/1-S2621/12, database is CAplus and MEDLINE.

We have shown that the small structural perturbation of incorporating a PNA (peptide nucleic acid) group into a fibrin-targeted contrast agent has a profound impact on relaxivity. The PNA moiety increases mol. weight by 3% but increases relaxivity by 50% compared to Gd2-Gly2-Pep-Gd2. The effect of the PNA group on relaxivity is the equivalent of synthesizing an agent with six GdDTPA moieties to achieve equivalent relaxivity. The PNA group has a modest pos. impact on fibrin binding and serves to rigidify the N-terminal portion of the mol. upon fibrin binding. Importantly, the PNA group does not increase non-specific protein binding. As a result, relaxivity of Gd2-T-Pep-Gd2 bound to fibrin is more than 50% increased compared to Gd2-Pep-Gd2 while the relaxivity of the two compounds in plasma is comparable. This should result in much greater clot blood contrast for Gd2-T-Pep-Gd2.

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C7H11N3O2, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Zhang, Zhaoda’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 186046-81-1

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C8H8O2, Application In Synthesis of 186046-81-1.

Zhang, Zhaoda published the artcileHeteroditopic Binding of Magnetic Resonance Contrast Agents for Increased Relaxivity, Application In Synthesis of 186046-81-1, the publication is Angewandte Chemie, International Edition (2011), 50(11), 2621-2624, S2621/1-S2621/12, database is CAplus and MEDLINE.

We have shown that the small structural perturbation of incorporating a PNA (peptide nucleic acid) group into a fibrin-targeted contrast agent has a profound impact on relaxivity. The PNA moiety increases mol. weight by 3% but increases relaxivity by 50% compared to Gd2-Gly2-Pep-Gd2. The effect of the PNA group on relaxivity is the equivalent of synthesizing an agent with six GdDTPA moieties to achieve equivalent relaxivity. The PNA group has a modest pos. impact on fibrin binding and serves to rigidify the N-terminal portion of the mol. upon fibrin binding. Importantly, the PNA group does not increase non-specific protein binding. As a result, relaxivity of Gd2-T-Pep-Gd2 bound to fibrin is more than 50% increased compared to Gd2-Pep-Gd2 while the relaxivity of the two compounds in plasma is comparable. This should result in much greater clot blood contrast for Gd2-T-Pep-Gd2.

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C8H8O2, Application In Synthesis of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Stepanyugin, A. V.’s team published research in Biopolimeri i Klitina in 19 | CAS: 608-34-4

Biopolimeri i Klitina published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C4H12ClNO, Computed Properties of 608-34-4.

Stepanyugin, A. V. published the artcileUV spectra of pyrimidine bases and nucleosides in the context of methyl substitution and interaction with amino acid carboxylic group, Computed Properties of 608-34-4, the publication is Biopolimeri i Klitina (2003), 19(1), 43-63, database is CAplus.

UV spectra of pyrimidine nucleotide bases, nucleosides, a number of their derivatives and analogs were investigated in anhydrous DMSO. Effects of interaction with neutral and deprotonated carboxylic group of amino acids on the UV spectra were traced. It was established that methylation of pyrimidine bases at the positions 1 and S leads to the 5-12 nm bathochromic shift of the absorption bands. The majority of the Cyt derivatives excluding m3 Cyt and isoCyt were shown to interact specifically with neutral carboxylic group. Interactions with deprotonated carboxylic group is characteristic of Ura, Thy and their derivatives, except chx1Ura, s2Ura and dU. The conclusion was drawn that substitution at the positions 1 and 5 is accompanied by a decrease of a complex formation ability with the both forms of carboxylic groups, but substitution at the position 5 strengthens interaction with neutral carboxylic group but decreases interaction with carboxylate-ion. Biol. significance of the results obtained is discussed.

Biopolimeri i Klitina published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C4H12ClNO, Computed Properties of 608-34-4.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia