Amirkhanov, Nariman V.’s team published research in Bioconjugate Chemistry in 21 | CAS: 186046-81-1

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Amirkhanov, Nariman V. published the artcileImaging Human Pancreatic Cancer Xenografts by Targeting Mutant KRAS2 mRNA with [111In]DOTAn-Poly(diamidopropanoyl)m-KRAS2 PNA-d(Cys-Ser-Lys-Cys) Nanoparticles, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Bioconjugate Chemistry (2010), 21(4), 731-740, database is CAplus and MEDLINE.

95% Of patients with ductal pancreatic cancer carry 12th codon activating mutations in their KRAS2 oncogenes. Early whole body imaging of mutant KRAS2 mRNA activation in pancreatic cancer would contribute to disease management. Scintigraphic hybridization probes to visualize gene activity in vivo constitute a new paradigm in mol. imaging. We have previously imaged mutant KRAS2 mRNA activation in pancreatic cancer xenografts by positron emission tomog. (PET) based on a single radiometal, 64Cu, chelated to a 1,4,7,10-tetra(carboxymethylaza)cyclododecane (DOTA) chelator, connected via a flexible, hydrophilic spacer, aminoethoxyethoxyacetate (AEEA), to the N-terminus of a mutant KRAS2 peptide nucleic acid (PNA) hybridization probe. A peptide analog of insulin-like growth factor 1 (IGF1), connected to a C-terminal AEEA, enabled receptor-mediated endocytosis. We hypothesized that a polydiamidopropanoyl (PDAP) dendrimer (generation m), with increasing numbers (n) of DOTA chelators, extended via an N-terminal AEEA from a mutant KRAS2 PNA with a C-terminal AEEA and IGF1 analog could enable more intense external imaging of pancreatic cancer xenografts that overexpress IGF1 receptor and mutant KRAS2 mRNA. ([111In]DOTA-AEEA)n-PDAPm-AEEA2-KRAS2 PNA-AEEA-IGF1 analogs were prepared and administered i.v. into immunocompromised mice bearing human AsPC1 (G12D) pancreatic cancer xenografts. CAPAN2 (G12 V) pancreatic cancer xenografts served as a cellular KRAS2 mismatch control. Scintigraphic tumor/muscle image intensity ratios for complementary [111In]n-PDAPm-KRAS2 G12D probes increased from 3.1 ± 0.2 at n = 2, m = 1, to 4.1 ± 0.3 at n = 8, m = 3, to 6.2 ± 0.4 at n = 16, m = 4, in AsPC1 (G12D) xenografts. Single mismatch [111In]n-PDAPm-KRAS2 G12 V control probes showed lower tumor/muscle ratios (3.0 ± 0.6 at n = 2, m = 1, 2.6 ± 0.9 at n = 8, m = 3, and 3.7 ± 0.3 at n = 16, m = 4). The mismatch results were comparable to the PNA-free [111In]DOTA control results. Simultaneous administration of nonradioactive Gdn-KRAS2 G12 V probes (n = 2 or 8) increased accumulation of [111In]8KRAS2 G12 V probes 3-6-fold in pancreatic cancer CAPAN2 xenografts and other tissues, except for a 2-fold decrease in the kidneys. As a result, tissue distribution tumor/muscle ratios of 111In uptake increased from 3.1 ± 0.5 to 6.5 ± 1.0, and the kidney/tumor ratio of 111In uptake decreased by more than 5-fold from 174.8 ± 17.5 to 30.8 ± 3.1. Thus, PDAP dendrimers with up to 16 DOTA chelators attached to PNA-IGF1 analogs, as well as simultaneous administration of the elevated dose of nonradioactive Gdn-KRAS2 G12 V probes, enhanced tumor uptake of [111In]nKRAS2 PNA probes. These results also imply that Gd(III) dendrimeric hybridization probes might be suitable for magnetic resonance imaging of gene expression in tumors, because the higher generations of the dendrimers, including the NMR contrast Gdn-KRAS2 G12 V probes, improved tumor accumulation of the probes and specificity of tumor imaging.

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Fang, Huafeng’s team published research in Molecular Pharmaceutics in 6 | CAS: 186046-81-1

Molecular Pharmaceutics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Application of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Fang, Huafeng published the artcileCationic Shell-Cross-Linked Knedel-like (cSCK) Nanoparticles for Highly Efficient PNA Delivery, Application of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Molecular Pharmaceutics (2009), 6(2), 615-626, database is CAplus and MEDLINE.

Peptide nucleic acids have a number of features that make them an ideal platform for the development of in vitro biol. probes and tools. Unfortunately, their inability to pass through membranes has limited their in vivo application as diagnostic and therapeutic agents. Herein, we describe the development of cationic shell-crosslinked knedel-like (cSCK) nanoparticles as highly efficient vehicles for the delivery of PNAs into cells, either through electrostatic complexation with a PNA·ODN hybrid, or through a bioreductively cleavable disulfide linkage to a PNA. These delivery systems are better than the standard Lipofectamine/ODN-mediated method and much better than the Arg9-mediated method for PNA delivery in HeLa cells, showing lower toxicity and higher bioactivity. The cSCKs were also found to facilitate both endocytosis and endosomal release of the PNAs, while themselves remaining trapped in the endosomes.

Molecular Pharmaceutics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Application of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Cheruiyot, Samwel K.’s team published research in ChemBioChem in 17 | CAS: 169396-92-3

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Application In Synthesis of 169396-92-3.

Cheruiyot, Samwel K. published the artcileFluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids, Application In Synthesis of 169396-92-3, the publication is ChemBioChem (2016), 17(16), 1558-1562, database is CAplus and MEDLINE.

Development of new fluorescent peptide nucleic acids (PNAs) is important for fundamental research and practical applications. The goal of this study was the design of fluorogenic nucleobases for incorporation in triplex-forming PNAs. The underlying design principle was the use of a protonation event that accompanied binding of a 2-aminopyridine (M) nucleobase to a G-C base pair as an on switch for a fluorescence signal. Two fluorogenic nucleobases, 3-(1-phenylethynyl)-M and phenylpyrrolo-M, were designed, synthesized and studied. The new M derivatives provided modest enhancement of fluorescence upon protonation but showed reduced RNA binding affinity and quenching of fluorescence signal upon triple-helix formation with cognate double-stranded RNA. Our study illustrates the principal challenges of design and provides guidelines for future improvement of fluorogenic PNA nucleobases. The 3-(1-phenylethynyl)-M may be used as a fluorescent nucleobase to study PNA-RNA triple-helix formation.

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Application In Synthesis of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Fortunati, Simone’s team published research in Biosensors & Bioelectronics in 129 | CAS: 169396-92-3

Biosensors & Bioelectronics published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Fortunati, Simone published the artcileNovel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy, Synthetic Route of 169396-92-3, the publication is Biosensors & Bioelectronics (2019), 7-14, database is CAplus and MEDLINE.

A novel amperometric genosensor based on PNA probes covalently bound on the surface of Single Walled Carbon Nanotubes – Screen Printed Electrodes (SWCNT-SPEs) was developed and validated in samples of non-amplified genomic DNA extracted from genetically modified (GM)-Soy. The sandwich assay is based on a first recognition of a 20-mer portion of the target DNA by a complementary PNA Capture Probe (CP) and a second hybridization with a PNA Signalling Probe (SP), with a complementary sequence to a different portion of the target DNA. The SP was labeled with biotin to measure current signal by means of a final incubation of an Alk. Phosphatase-streptavidin conjugate (ALP-Strp). The electrochem. detection was carried out using hydroquinone diphosphate (HQDP) as enzymic substrate. The genoassay provided a linear range from 250 pM to 2.5 nM, LOD of 64 pM and LOQ of 215 pM Excellent selectivity towards one base mismatch (1-MM) or scrambled (SCR) sequences was obtained. A simple protocol for extraction and anal. of non-amplified soybean genomic DNA without sample treatment was developed and validated. Our study provides insight into how the outstanding recognition efficiency of PNAs can be combined with the unique properties of CNTs in terms of signal response enhancement for direct detection of genomic DNA samples at the level of interest without previous amplification.

Biosensors & Bioelectronics published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Fortunati, Simone’s team published research in Biosensors & Bioelectronics in 129 | CAS: 186046-81-1

Biosensors & Bioelectronics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Fortunati, Simone published the artcileNovel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy, Synthetic Route of 186046-81-1, the publication is Biosensors & Bioelectronics (2019), 7-14, database is CAplus and MEDLINE.

A novel amperometric genosensor based on PNA probes covalently bound on the surface of Single Walled Carbon Nanotubes – Screen Printed Electrodes (SWCNT-SPEs) was developed and validated in samples of non-amplified genomic DNA extracted from genetically modified (GM)-Soy. The sandwich assay is based on a first recognition of a 20-mer portion of the target DNA by a complementary PNA Capture Probe (CP) and a second hybridization with a PNA Signalling Probe (SP), with a complementary sequence to a different portion of the target DNA. The SP was labeled with biotin to measure current signal by means of a final incubation of an Alk. Phosphatase-streptavidin conjugate (ALP-Strp). The electrochem. detection was carried out using hydroquinone diphosphate (HQDP) as enzymic substrate. The genoassay provided a linear range from 250 pM to 2.5 nM, LOD of 64 pM and LOQ of 215 pM Excellent selectivity towards one base mismatch (1-MM) or scrambled (SCR) sequences was obtained. A simple protocol for extraction and anal. of non-amplified soybean genomic DNA without sample treatment was developed and validated. Our study provides insight into how the outstanding recognition efficiency of PNAs can be combined with the unique properties of CNTs in terms of signal response enhancement for direct detection of genomic DNA samples at the level of interest without previous amplification.

Biosensors & Bioelectronics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 169396-92-3

Organic Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C5H12O2, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C5H12O2, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 172405-16-2

Organic Letters published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C8H8O2, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C8H8O2, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 186046-81-1

Organic Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H8O4, HPLC of Formula: 186046-81-1.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, HPLC of Formula: 186046-81-1, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H8O4, HPLC of Formula: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Pinto, Brunella’s team published research in Biochimica et Biophysica Acta, General Subjects in 1861 | CAS: 169396-92-3

Biochimica et Biophysica Acta, General Subjects published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Pinto, Brunella published the artcileSynthesis and label free characterization of a bimolecular PNA homo quadruplex, HPLC of Formula: 169396-92-3, the publication is Biochimica et Biophysica Acta, General Subjects (2017), 1861(5_Part_B), 1222-1228, database is CAplus and MEDLINE.

G-quadruplex DNA is involved in many physiol. and pathol. processes. Both clin. and exptl. studies on DNA G-quadruplexes are slowed down by their enzymic instability. In this frame, more stable chem. modified analogs are needed. The bis-end-linked-(gggt)2 PNA mol. (BEL-PNA) was synthesized using in solution and solid phase synthetic approaches. Quadruplex formation was assessed by CD (CD) and surface enhanced Raman scattering (SERS). An unprecedented bimol. PNA homo quadruplex is here reported. To achieve this goal, we developed a bifunctional linker that once functionalized with gggt PNA strands and annealed in K+ buffer allowed the obtainment of a PNA homo quadruplex. 4The identification of the strong SERS band at âˆ?1481 cm 1, attributable to vibrations involving the quadruplex diagnostic Hoogsteen type hydrogen bonds, confirmed the formation of the PNA homo quadruplex. By tethering two G-rich PNA strands to the two ends of a suitable bifunctional linker it is possible to obtain bimol. PNA homo quadruplexes after annealing in K+-containing buffers. The formation of such CD-unfriendly complexes can be monitored, even at low concentrations, by using the SERS technique. Given the importance of DNA G-quadruplexes in medicine and nanotechnol., the obtainment of G-quadruplex analogs provided with enhanced enzymic stability, and their monitoring by highly sensitive label-free techniques are of the highest importance. This article is part of a Special Issue entitled “G-quadruplex” – guest edited by Dr. Concetta Giancola and Dr. Daniela Montesarchio.

Biochimica et Biophysica Acta, General Subjects published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, HPLC of Formula: 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

James, Carrie R.’s team published research in Journal of the American Chemical Society in 136 | CAS: 169396-92-3

Journal of the American Chemical Society published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Related Products of pyrimidines.

James, Carrie R. published the artcilePoly(oligonucleotide), Related Products of pyrimidines, the publication is Journal of the American Chemical Society (2014), 136(32), 11216-11219, database is CAplus and MEDLINE.

Here we report the preparation of poly(oligonucleotide) brush polymers and amphiphilic brush copolymers from nucleic acid monomers via graft-through polymerization We describe the polymerization of PNA-norbornyl monomers to yield poly-PNA (poly(peptide nucleic acid)) via ring-opening metathesis polymerization (ROMP) with the initiator, (IMesH2)(C5H5N)2(Cl)2RuCHPh. In addition, we present the preparation of poly-PNA nanoparticles from amphiphilic block copolymers and describe their hybridization to a complementary single-stranded DNA (ssDNA) oligonucleotide.

Journal of the American Chemical Society published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Related Products of pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia