de Brito, Luis R. et al. published their research in Leukemia Research in 2011 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Comparative pre-clinical evaluation of receptor tyrosine kinase inhibitors for the treatment of multiple myeloma was written by de Brito, Luis R.;Batey, Mike A.;Zhao, Yan;Squires, Matt S.;Maitland, Helen;Leung, Hing Y.;Hall, Andrew G.;Jackson, Graham;Newell, David R.;Irving, Julie A. E.. And the article was included in Leukemia Research in 2011.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Background: Fibroblast growth factor receptor 3 (FGFR3) is up-regulated as a result of the t(4;14)(p16;q32) translocation that occurs in up to 20% of multiple myeloma (MM) patients. Recent studies have demonstrated that up-regulation of FGFR3 promotes cell survival, growth and drug resistance in malignant plasma cells, both in vitro and in vivo. Therefore, inhibition of FGFR3 signalling is potential target for the chemotherapeutic intervention in t(4;14) MM. Methods: Small mol. receptor tyrosine kinase inhibitors (PD173074, sunitinib (SU-11248), vandetanib (ZD6474) and vatalanib (PTK-787)) with varying degrees of inhibitory activity and selectivity against FGFR, were assessed in Ba/f3 cells expressing ZNF198-FGFR1 and MM cell lines. Cell viability, FGFR3 and ZNF198-FGFR1 phosphorylation and apoptosis were evaluated by growth inhibition assays, immunoblotting and fluorescence-activated cell sorting anal., resp. An in vivo study was performed with sunitinib in t(4;14)-pos. and t(4;14)-neg. human MM tumor xenograft models. Results: PD173074 and sunitinib differentially inhibited the growth of Ba/f3 cells expressing ZNF198-FGFR1 (GI50 = 10 nM and 730 nM, vs. GI50 >1 μM and 2.7 μM for parental cells; p < 0.0001) and t(4;14) pos. MM cell lines (GI50 = 4-10 μM and 1-3 μM, vs. GI50 = 14-15 μM and 4-5 μM for t(4;14) neg. MM cells; p ≤ 0.002). In addition, both PD173074 and sunitinib inhibited the activation of FGFR3 in t(4;14)-pos. MM cells. PD173074 and sunitinib induced an apoptotic response in a concentration and time-dependent manner in a t(4;14)-pos. (PD174073 and sunitinib) but not a t(4;14)-neg. MM cell line (sunitinib only); however, in in vivo tumors derived from the same cell lines, sunitinib was only active in the t(4;14)-neg. model. Conclusions: These data demonstrate that PD173074 and sunitinib are inhibitors of FGFR3 in MM cell lines, and that sunitinib has in vivo activity in a human MM tumor xenograft model. However, caution should be exercised in using the t(4;14) translocation as a predictive biomarker for patient selection in clin. trials with sunitinib. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Xu, Chang et al. published their research in Clinical Cancer Research in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer was written by Xu, Chang;Nikolova, Olga;Basom, Ryan S.;Mitchell, Ryan M.;Shaw, Reid;Moser, Russell D.;Park, Heuijoon;Gurley, Kay E.;Kao, Michael C.;Green, Carlos L.;Schaub, Franz X.;Diaz, Robert L.;Swan, Hallie A.;Jang, In S.;Guinney, Justin;Gadi, Vijayakrishna K.;Margolin, Adam A.;Grandori, Carla;Kemp, Christopher J.;Mendez, Eduardo. And the article was included in Clinical Cancer Research in 2018.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Purpose: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with high mortality and a lack of targeted therapies. To identify and prioritize druggable targets, we performed genome anal. together with genome-scale siRNA and oncol. drug profiling using low-passage tumor cells derived from a patient with treatment-resistant HPV-neg. HNSCC. Exptl. Design: A tumor cell culture was established and subjected to whole-exome sequencing, RNA sequencing, comparative genome hybridization, and high-throughput phenotyping with a siRNA library covering the druggable genome and an oncol. drug library. Secondary screens of candidate target genes were performed on the primary tumor cells and two nontumorigenic keratinocyte cell cultures for validation and to assess cancer specificity. siRNA screens of the kinome on two isogenic pairs of p53-mutated HNSCC cell lines were used to determine generalizability. Clin. utility was addressed by performing drug screens on two addnl. HNSCC cell cultures derived from patients enrolled in a clin. trial. Results: Many of the identified copy number aberrations and somatic mutations in the primary tumor were typical of HPV(-) HNSCC, but none pointed to obvious therapeutic choices. In contrast, siRNA profiling identified 391 candidate target genes, 35 of which were preferentially lethal to cancer cells, most of which were not genomically altered. Chemotherapies and targeted agents with strong tumor-specific activities corroborated the siRNA profiling results and included drugs that targeted the mitotic spindle, the proteasome, and G2-M kinases WEE1 and CHK1. We also show the feasibility of ex vivo drug profiling for patients enrolled in a clin. trial. Conclusions: High-throughput phenotyping with siRNA and drug libraries using patient-derived tumor cells prioritizes mutated driver genes and identifies novel drug targets not revealed by genomic profiling. Functional profiling is a promising adjunct to DNA sequencing for precision oncol. Clin Cancer Res; 24(12); 2828-43. ©2018 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Xiao, Zhen et al. published their research in Oncology Reports in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Targeting P16INK4A in uterine serous carcinoma through inhibition of histone demethylation was written by Xiao, Zhen;He, Yingying;Liu, Chongya;Xiang, Lin;Yi, Jingyan;Wang, Min;Shen, Tingting;Shen, Lanlin;Xue, Yijue;Shi, Hong;Liu, Pixu. And the article was included in Oncology Reports in 2019.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Uterine serous carcinoma (USC) is a subtype of endometrial cancer. Compared with endometrial endometroid carcinoma, the majority of USC cases are more aggressive. Cyclin-dependent kinase inhibitor 2A (P16INK4A) is a canonical tumor suppressor that blocks cell cycle progression; however, P16INK4A is overexpressed in USC. The aim of the present study was to determine the role of P16INK4A in P16INK4A-pos. endometrial cancer, with the hope of elucidating a novel therapeutic approach for this type of malignancy. A total of 2 endometrial cancer cell lines, ETN-1 and EFE-184, were selected for further investigation, due to them being known to express high levels of P16INK4A. Using short hairpin RNA targeting P16INK4A, P16INK4A was downregulated in these cancer cell lines. Cell viability and migration were examined via 2D/3D clonogenic and wound healing assays. Subsequently, GSK-J4, a histone demethylase inhibitor, was employed to deplete P16INK4A in these cancer cell lines and an ex vivo culture system of a patient-derived xenograft (PDX) endometrial tumor sample. Following P16INK4A knockdown, the proliferation and migration of ETN-1 and EFE-184 cells markedly declined. When exposed to GSK-J4, the levels of KDM6B and P16INK4A were almost completely abrogated, and the cell viability was significantly reduced in these cell lines and the ex vivo-cultured PDX tumor explants. The association between the levels of P16INK4A, lysine demethylase 6B (KDM6B) and the methylation status of histone 3 lysine 27 (H3K27) in these cell lines and the human USC tumor sample was also demonstrated. P16INK4A appears to be oncogenic in a number of endometrial cancer cell lines. The level of P16INK4A is associated with the methylation status of H3K27. Increased methylation of H3K27 coexists with downregulation of KDM6B and, subsequently, P16INK4A, which reduces cell proliferation and invasiveness in endometrial cancer. The observations of the present study may enable the development of a novel therapeutic strategy for P16INK4A-pos. endometrial cancer, particularly USC. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Horton, John R. et al. published their research in Journal of Biological Chemistry in 2016 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases was written by Horton, John R.;Engstrom, Amanda;Zoeller, Elizabeth L.;Liu, Xu;Shanks, John R.;Zhang, Xing;Johns, Margaret A.;Vertino, Paula M.;Fu, Haian;Cheng, Xiaodong. And the article was included in Journal of Biological Chemistry in 2016.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid The following contents are mentioned in the article:

The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove Me groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mm α-ketoglutarate. In contrast, JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ∼8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a ∼10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymic activity of the KDM5 family to be the linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the design of KDM5 demethylase inhibitors with improved potency and selectivity. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Hilberg, Frank et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases was written by Hilberg, Frank;Tontsch-Grunt, Ulrike;Baum, Anke;Le, Anh T.;Doebele, Robert C.;Lieb, Simone;Gianni, Davide;Voss, Tilman;Garin-Chesa, Pilar;Haslinger, Christian;Kraut, Norbert. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2018.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

The triple-angiokinase inhibitor nintedanib is an orally available, potent, and selective inhibitor of tumor angiogenesis by blocking the tyrosine kinase activities of vascular endothelial growth factor receptor (VEGFR) 1-3, platelet-derived growth factor receptor (PDGFR)-α and -β, and fibroblast growth factor receptor (FGFR) 1-3. Nintedanib has received regulatory approval as second-line treatment of adenocarcinoma non-small cell lung cancer (NSCLC), in combination with docetaxel. In addition, nintedanib has been approved for the treatment of idiopathic lung fibrosis. Here we report the results from a broad kinase screen that identified addnl. kinases as targets for nintedanib in the low nanomolar range. Several of these kinases are known to be mutated or overexpressed and are involved in tumor development (discoidin domain receptor family, member 1 and 2, tropomyosin receptor kinase A (TRKA) and C, rearranged during transfection proto-oncogene [RET proto oncogene]), as well as in fibrotic diseases (e.g., DDRs). In tumor cell lines displaying mol. alterations in potential nintedanib targets, the inhibitor demonstrates direct antiproliferative effects: in the NSCLC cell line NCI-H1703 carrying a PDGFRa amplification (ampl.); the gastric cancer cell line KatoIII and the breast cancer cell line MFM223, both driven by a FGFR2 amplification; AN3CA (endometrial carcinoma) bearing a mutated FGFR2; the acute myeloid leukemia cell lines MOLM-13 and MV-4-11-B with FLT3 mutations; and the NSCLC adenocarcinoma LC-2/ad harboring a CCDC6-RET fusion. Potent kinase inhibition does not, however, strictly translate into antiproliferative activity, as demonstrated in the TRKA-dependent cell lines CUTO-3 and KM-12. Importantly, nintedanib treatment of NCI-H1703 tumor xenografts triggered effective tumor shrinkage, indicating a direct effect on the tumor cells in addition to the antiangiogenic effect on the tumor stroma. These findings will be instructive in guiding future genome-based clin. trials of nintedanib. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chu, Xuan et al. published their research in Cancer Cell International in 2020 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Computed Properties of C24H27N5O2

GSK-J4 induces cell cycle arrest and apoptosis via ER stress and the synergism between GSK-J4 and decitabine in acute myeloid leukemia KG-1a cells was written by Chu, Xuan;Zhong, Liang;Yu, Lihua;Xiong, Ling;Li, Jian;Dan, Wenran;Ye, Jiao;Liu, Chen;Luo, Xu;Liu, Beizhong. And the article was included in Cancer Cell International in 2020.Computed Properties of C24H27N5O2 The following contents are mentioned in the article:

GSK-J4 is the inhibitor of H3K27me3 demethylase. Recent studies demonstrated that GSK-J4 could affect the proliferation and apoptosis of a variety of cancer cells. However, the effects and underlying mechanisms of GSK-J4 on the proliferation and apoptosis of human acute myeloid leukemia (AML) KG-1a cells have not been explored thoroughly. The effect of GSK-J4 on cell proliferation was assessed with CCK8, while cell cycle distribution and apoptosis were analyzed using flow cytometry. The proteins related to cell cycle, cell apoptosis, endoplastic reticulum (ER) stress and PKC-α/p-Bcl2 pathway were detected by Western blotting. The expression level of PKC-α mRNA was measured by quant. real-time PCR. ER stress inhibitor 4-Ph butyric acid (4-PBA) was used to explore the role of ER stress in GSK-J4 induced cell-cycle arrest and cell apoptosis. The combination effects of Decitabine and GSK-J4 on KG-1a cells proliferation and apoptosis were also evaluated by CCK8, flow cytometry and immunoblot anal. Results: GSK-J4 reduced cell viability and arrested cell cycle progression at the S phase by decreasing the expression of CyclinD1 and CyclinA2 and increasing that of P21. Moreover, GSK-J4 enhanced the expression of apoptosis-related proteins (cle-caspase-9 and bax) and inhibited PKC-a/p-Bcl2 pathway to promote cell apoptosis. In addition, ER stress-related proteins (caspase-12, GRP78 and ATF4) were increased markedly after exposure to GSK-J4. The effects of GSK-J4 on cell cycle, apoptosis and PKC-a/p-Bcl2 pathway were attenuated after treatment with ER stress inhibitor. Furthermore, decitabine could significantly inhibit the proliferation and induce the apoptosis of KG-1a cells after combined treatment with GSK-J4. Taken together, this study provided evidence that ER stress could regulate the process of GSK-J4-induced cell cycle arrest, cell apoptosis and PKC-α/p-bcl2 pathway inhibition and demonstrated a potential combinatory effect of decitabine and GSK-J4 on leukemic cell proliferation and apoptosis. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Computed Properties of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Computed Properties of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ullah, Imran et al. published their research in ACS Infectious Diseases in 2020 | CAS: 39083-15-3

5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 39083-15-3

An Antiparasitic Compound from the Medicines for Malaria Venture Pathogen Box Promotes Leishmania Tubulin Polymerization was written by Ullah, Imran;Gahalawat, Suraksha;Booshehri, Laela M.;Niederstrasser, Hanspeter;Majumdar, Shreoshi;Leija, Christopher;Bradford, James M.;Hu, Bin;Ready, Joseph M.;Wetzel, Dawn M.. And the article was included in ACS Infectious Diseases in 2020.Reference of 39083-15-3 The following contents are mentioned in the article:

The few frontline antileishmanial drugs are poorly effective and toxic. To search for new drugs for this neglected tropical disease, we tested the activity of compounds in the Medicines for Malaria Venture (MMV) “Pathogen Box” against Leishmania amazonensis axenic amastigotes. Screening yielded six discovery antileishmanial compounds with EC50 values from 50 to 480 nM. Concentration-response assays demonstrated that the best hit, MMV676477(I), had mid-nanomolar cytocidal potency against intracellular Leishmania amastigotes, Trypanosoma brucei, and Plasmodium falciparum, suggesting broad antiparasitic activity. We explored structure-activity relationships (SAR) within a small group of MMV676477 analogs and observed a wide potency range (20-5000 nM) against axenic Leishmania amastigotes. Compared to MMV676477, our most potent analog, SW41, had ~5-fold improved antileishmanial potency. Multiple lines of evidence suggest that MMV676477 selectively disrupts Leishmania tubulin dynamics. Morphol. studies indicated that MMV676477 and analogs affected L. amazonensis during cell division. Differential centrifugation showed that MMV676477 promoted partitioning of cellular tubulin toward the polymeric form in parasites. Turbidity assays with purified Leishmania and porcine tubulin demonstrated that MMV676477 promoted leishmanial tubulin polymerization in a concentration-dependent manner. Analogs’ antiparasitic activity correlated with their ability to facilitate purified Leishmania tubulin polymerization Chem. crosslinking demonstrated binding of the MMV676477 scaffold to purified Leishmania tubulin, and competition studies established a correlation between binding and antileishmanial activity. Our studies demonstrate that MMV676477 is a potent antiparasitic compound that preferentially promotes Leishmania microtubule polymerization Due to its selectivity for and broad-spectrum activity against multiple parasites, this scaffold shows promise for antiparasitic drug development. This study involved multiple reactions and reactants, such as 5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3Reference of 39083-15-3).

5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 39083-15-3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Patel, Atish et al. published their research in Cancer Chemotherapy and Pharmacology in 2013 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

PD173074, a selective FGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells was written by Patel, Atish;Tiwari, Amit K.;Chufan, Eduardo E.;Sodani, Kamlesh;Anreddy, Nagaraju;Singh, Satyakam;Ambudkar, Suresh V.;Stephani, Ralph;Chen, Zhe-Sheng. And the article was included in Cancer Chemotherapy and Pharmacology in 2013.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Specific tyrosine kinase inhibitors were recently reported to modulate the activity of ABC transporters, leading to an increase in the intracellular concentration of their substrate drugs. In this study, we determine whether PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could reverse ABC transporter-mediated multidrug resistance. 3-(4,5-Dimethylthiazol-yl)-2,5-diphenyllapatinibrazolium bromide assay was used to determine the effect of PD173074 on reversal of ABC transporter-mediated multidrug resistance (MDR). In addition, [3H]-paclitaxel accumulation/efflux assay, western blotting anal., ATPase, and photoaffinity labeling assays were done to study the interaction of PD173074 on ABC transporters. PD173074 significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to substrate anticancer drugs colchicine, paclitaxel, and vincristine. This effect of PD173074 is specific to ABCB1, as no significant interaction was detected with other ABC transporters such as ABCC1 and ABCG2. The observed reversal effect seems to be primarily due to the decreased active efflux of [3H]-paclitaxel in ABCB1 overexpressing cells observed in efflux assay. In addition, no significant change in the ABCB1 expression was observed when ABCB1 overexpressing cells were exposed to 5 μM PD173074 for up to 3 days, thereby further suggesting its role in modulating the function of the transporter. In addition, PD173074 stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Interestingly, PD173074 did not inhibit photolabeling of ABCB1 with [125I]-iodoarylazidoprazosin (IAAP), showing that it binds at a site different from that of IAAP in the drug-binding pocket. Here, we report for the first time, PD173074, an inhibitor of the FGFR, to selectively reverse ABCB1 transporter-mediated MDR by directly blocking the efflux function of the transporter. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Farrokhzadeh, Abdolkarim et al. published their research in Physical Chemistry Chemical Physics in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Revealing the distinct mechanistic binding and activity of 5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-3-(5-(4-methylpiperazin-1-yl)-1H-benzo[d]imidazol-2-yl)-1H-indazole enantiomers against FGFR1 was written by Farrokhzadeh, Abdolkarim;Akher, Farideh Badichi;Olotu, Fisayo A.;Soliman, Mahmoud E. S.;Van Heerden, Fanie R.. And the article was included in Physical Chemistry Chemical Physics in 2019.Product Details of 219580-11-7 The following contents are mentioned in the article:

The concept of chirality has become prominent over the years, particularly with regards to the design of therapeutic mols. This phenomenon was recently reported for pro-carcinogenic fibroblast growth factor receptor 1 (FGFR1), wherein two inhibitors exhibited disparate inhibitory potencies due to the effects of chirality. Therefore, the ability of the R-enantiomer (R-21c) to possess a potency 10.44 times that of the S-enantiomer (S-21c) leaves us with a curiosity to investigate the underlying mechanisms using computational methods. Hence, presented in this study are insights that clearly explain the systematic effects of chirality on the differential activities of (R)-21c and (S)-21c towards FGFR1. The findings showed that the “R-configured” (R)-21c induced a notable conformational change in the active site P-loop, which enhanced its motion, as complemented by rotation of two dihedral angles: φ1(CNCC) and φ2(CC*OC), providing a favorable orientation. Likewise, optimal positioning of (R)-21c at the binding cavity allowed adequate interspaces that facilitated the formation of strong interactions with target residues. Moreover, the estimated ΔG binding correlated with bioactivity data (IC50) and, when decomposed, we observed that van der Waals (vdW) interactions were the major highlight of the binding process of both 21c enantiomers and also accounted for their differential activities. Active site interactions of (R)-21c with residues Phe489 and Arg629 stabilized its two benzimidazole motifs, while Arg570 and Pro663 formed two strong N···H-N hydrogen bonds and one π-alkyl interaction, which altogether accounted for its inhibitory process towards FGFR1. In contrast, these interactions were not observed in (S)-21c due to its non-flexible S-configuration, which disallowed its extension into the active site region and prevented interaction with crucial residues. These results are expected to facilitate the discovery and rational design of novel and specific FGFR1 inhibitors. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Product Details of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Rui, Shumin et al. published their research in Bone (New York, NY, United States) in 2022 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Phosphate promotes osteogenic differentiation through non-canonical Wnt signaling pathway in human mesenchymal stem cells was written by Rui, Shumin;Kubota, Takuo;Ohata, Yasuhisa;Yamamoto, Kenichi;Fujiwara, Makoto;Takeyari, Shinji;Ozono, Keiichi. And the article was included in Bone (New York, NY, United States) in 2022.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Phosphate is indispensable in osteogenesis and mineralization. However, mechanisms by which phosphate enhances osteogenic differentiation are not fully understood. In this study, we studied the effect of phosphate on osteogenic differentiation as well as signaling pathways induced by phosphate in the process. Induced human bone marrow-derived mesenchymal stem cells differentiation into osteoblasts by the change of media containing β-glycerophosphate (GP), 1 mM inorganic phosphate, or 3 mM inorganic phosphate (Pi). The differentiation of osteoblasts was verified by the expression of osteoblast differentiation markers and calcium deposition. RNA sequencing was performed to assess transcriptome in the early stage of osteogenic differentiation. Osteogenic differentiation and mineralization were promoted in the 3 mM Pi group compared to those in the GP and 1 mM Pi groups on day 7 of culture. RNA sequencing revealed that the gene expressions involved in osteogenesis and the components in the Wnt signaling pathway was increased in 3 mM Pi group compared with those in the GP on day 7. Anal. with qPCR and Western blot suggested upregulation of components in the non-canonical Wnt signaling pathway, including WNT5b and phosphorylated-c-Jun in the 3 mM Pi group on day 7. WNT11 mRNA expression was increased in the 2 induction groups on day 7. Inhibition of WNT5b by siRNA experiment attenuated the components in non-canonical Wnt signaling expression, including WNT5b, WNT11 and ROR2 mRNA expression and phosphorylated-c-Jun protein expression. In addition, osteogenic differentiation and mineralization were partly decreased in 3 mM Pi group on day 7 by the inhibition of WNT5b. Pi promoted osteogenic differentiation through the up-regulation of the non-canonical Wnt signaling pathway, including WNT5b, WNT11, p-c-Jun/c-Jun, in the early stage of differentiation. These findings provide a new perspective into the association of Pi and the non-canonical Wnt signaling pathway during osteogenic differentiation. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia