Kim, B. et al. published their research in Oncogene in 2015 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy was written by Kim, B.;Wang, S.;Lee, J. M.;Jeong, Y.;Ahn, T.;Son, D.-S.;Park, H. W.;Yoo, H.-S.;Song, Y.-J.;Lee, E.;Oh, Y. M.;Lee, S. B.;Choi, J.;Murray, J. C.;Zhou, Y.;Song, P. H.;Kim, K.-A.;Weiner, L. M.. And the article was included in Oncogene in 2015.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as epidermal growth factor receptor inhibitors in lung cancers, and has been prioritized as a key mol. target for cancer therapy. However, the underlying mechanism of resistance to Met-targeting drugs is poorly understood. Here, the authors describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by using a small interfering RNA-based synthetic lethal screening method. The authors found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the antitumor activity of SAIT301. Pathway anal. of these 69 genes implicated fibroblast growth factor receptor (FGFR) as a key regulator for antiproliferative effects of Met-targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met-targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restored SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression anal. using CCLE database shows that cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR and integrin β3 could be used as predictive markers for Met-targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met-targeting drugs. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Anderson, Hannah J. et al. published their research in Cellular Oncology in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation was written by Anderson, Hannah J.;Galileo, Deni S.. And the article was included in Cellular Oncology in 2016.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clin. relevant small-mol. inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-pos. and L1-neg. variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, resp. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-pos. glioblastoma-derived cells, down to the level of L1-neg. cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-neg. cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-mol. inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yang, Ying et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2015 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.SDS of cas: 219580-11-7

Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure was written by Yang, Ying;Adachi, Katsuyuki;Sheridan, Megan A.;Alexenko, Andrei P.;Schust, Danny J.;Schulz, Laura C.;Ezashi, Toshihiko;Roberts, R. Michael. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2015.SDS of cas: 219580-11-7 The following contents are mentioned in the article:

Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphol. distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7SDS of cas: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.SDS of cas: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Henderson, John et al. published their research in Journal of Cellular and Molecular Medicine in 2020 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis was written by Henderson, John;Duffy, Laura;Stratton, Richard;Ford, Dianne;O’Reilly, Steven. And the article was included in Journal of Cellular and Molecular Medicine in 2020.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF-β1, the quintessential pro-fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, while markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2-dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF-β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined TGF-β1 up-regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro-fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF-β1-induced fibrosis, while glutaminase expression is up-regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro-fibrotic metabolic phenotype in skin fibrosis. TGF-β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF-β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF-B1 in skin cells, while increased glutaminolysis is also evident in SSc fibroblasts. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kim, Do-Hee et al. published their research in Cancer Biology & Therapy in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations was written by Kim, Do-Hee;Kwak, Yeonui;Kim, Nam Doo;Sim, Taebo. And the article was included in Cancer Biology & Therapy in 2016.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clin. trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochem. kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying mol. mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the mol. mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clin. investigations of AP24534 for ECs. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhu, Xiaodong et al. published their research in International Immunopharmacology in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

LncRNA H19 regulates macrophage polarization and promotes Freund’s complete adjuvant-induced arthritis by upregulating KDM6A was written by Zhu, Xiaodong;Zhu, Ye;Ding, Chen;Zhang, Weiting;Guan, Huilin;Li, Chunmei;Lin, Xiao;Zhang, Yang;Huang, Chunyan;Zhang, Luyao;Yu, Xin;Zhang, Xiaomin;Zhu, Wei. And the article was included in International Immunopharmacology in 2021.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Aberrant expression of long non-coding RNA (lncRNA) H19 is tightly linked to multiple steps of tumorigenesis via the modulation of cell proliferation and apoptosis; however, the pathol. significance and regulatory mechanisms of lncRNA H19 in macrophages remain obscure. To investigate whether lncRNA H19 modulates macrophage activation in rheumatoid arthritis (RA), lncRNA H19 levels in PMA-induced PBMC from patients with RA and healthy volunteers were assessed. In addition, the distribution of macrophage subsets, macrophage phenotypic characteristics, and pro-inflammatory gene expression were examined in lncRNA H19 smart silencer- or pcDNA 3.1- H19-transfected macrophages and AAV8-mediated H19 overexpression in a Freunds complete adjuvant-induced arthritis mouse model. The level of lncRNA H19 was higher in RA patients than in healthy volunteers. Silencing of lncRNA H19 altered lipopolysaccharide plus interferon-induced M1 macrophage polarization and decreased IL-6, CD80, CCL8, and CXCL10 expression in macrophages of RA patients. LncRNA H19 overexpression markedly induced IL-6, CD80, HLA-DR, KDM6A, STAT1, IRF5, CCL8, CXCL9, CXCL10, and CXCL11 expression in macrophages and promoted macrophage migration. AAV8-mediated H19 overexpression aggravated arthritis in mice by promoting M1 macrophage polarization along with iNOS, IL-6, CCL8, CXCL9, CXCL10, CXCL11, MMP3, MMP13 and COX-2 expression in mononuclear cells isolated from the swollen ankle. GSK-J4, an inhibitor of KDM6A, suppressed the activity of lncRNA H19 in macrophages and ameliorated lncRNA H19-aggravated arthritis. In summary, the current study demonstrated that lncRNA H19 is upregulated in RA patients and arthritic mice. LncRNA H19 promotes M1 macrophage polarization and aggravates arthritis by upregulating KDM6A expression. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Miyake, Makito et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2010 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest was written by Miyake, Makito;Ishii, Masazumi;Koyama, Naoki;Kawashima, Kiyotaka;Kodama, Tetsuro;Anai, Satoshi;Fujimoto, Kiyohide;Hirao, Yoshihiko;Sugano, Kokichi. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2010.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Activating mutation of the fibroblast growth factor receptor-3 (FGFR3) gene is known as a key mol. event in both oncogenesis and cell proliferation of low-grade noninvasive human bladder urothelial carcinoma (UC), which is characterized by frequent intravesical recurrence. In this study, we investigated the antitumor potentiality of 1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a small-mol. FGFR3-selective tyrosine kinase inhibitor (TKI), as a therapeutic modality using eight UC cell lines. In our in vitro cell proliferation assay, PD173074 suppressed cell proliferation remarkably in two cell lines, namely, UM-UC-14 and MGHU3, which expressed mutated FGFR3 protein. In contrast, the other six cell lines expressing wild-type FGFR3 or without FGFR3 expression were resistant to PD173074 treatment. Cell cycle anal. revealed the growth inhibitory effect of PD173074 was associated with arrest at G1-S transition in a dose-depending manner. Furthermore, we observed an inverse relationship between Ki-67 and p27/Kip1 expression after PD173074 treatment, suggesting that up-regulation of p27 recruited UC cells harboring activating FGFR3 mutations in G1 that was analogous with the other receptor TKIs acting on the epidermal growth factor receptors. In the mouse xenograft models using s.c. transplanted UM-UC-14 and MGHU3, orally administered PD173074 suppressed tumor growth and induced apoptotic changes comparable with the results of our in vitro assay. These findings elucidated the effectiveness of mol. targeted approach for bladder UC harboring FGFR3 mutations and the potential utility to decrease the intravesical recurrence of nonmuscle invasive bladder UC after transurethral surgical resection. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Jonas, Oliver et al. published their research in Clinical Cancer Research in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Parallel In Vivo Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities was written by Jonas, Oliver;Oudin, Madeleine J.;Kosciuk, Tatsiana;Whitman, Matthew;Gertler, Frank B.;Cima, Michael J.;Flaherty, Keith T.;Langer, Robert. And the article was included in Clinical Cancer Research in 2016.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Treatment of BRAF-mutated melanoma tumors with BRAF inhibitor-based therapy produces high response rates, but of limited duration in the vast majority of patients. Published investigations of resistance mechanisms suggest numerous examples of tumor adaptation and signal transduction bypass mechanisms, but without insight into biomarkers that would predict which mechanism will predominate. Monitoring phenotypic response of multiple adaptive mechanisms simultaneously within the same tumor as it adapts during treatment has been elusive. This study reports on a method to provide a more complete understanding of adaptive tumor responses. We simultaneously measured in vivo antitumor activity of 12 classes of inhibitors, which are suspected of enabling adaptive escape mechanisms, at various time points during systemic BRAF inhibition. We used implantable microdevices to release multiple compounds into distinct regions of a tumor to measure the efficacy of each compound independently and repeated these measurements as tumors progressed on systemic BRAF treatment. We observed varying phenotypic responses to specific inhibitors before, during, and after prolonged systemic treatment with BRAF inhibitors. Our results specifically identify PI3K, PDGFR, EGFR, and HDAC inhibitors as becoming significantly more efficacious during systemic BRAF inhibition. The sensitivity to other targeted inhibitors remained mostly unchanged, whereas local incremental sensitivity to PLX4720 declined sharply. These findings suggest redundancy of several resistance mechanisms and may help identify optimal constituents of more effective combination therapy in BRAF-mutant melanoma. They also represent a new paradigm for dynamic measurement of adaptive signaling mechanisms within the same tumor during therapy. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Liang, Sheng-Ben et al. published their research in Clinical Cancer Research in 2011 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Computed Properties of C28H41N7O3

Molecular Target Characterization and Antimyeloma Activity of the Novel, Insulin-like Growth Factor 1 Receptor Inhibitor, GTx-134 was written by Liang, Sheng-Ben;Yang, Xiu-Zhi;Trieu, Young;Li, Zhihua;Zive, Jessica;Leung-Hagesteijn, Chungyee;Wei, Ellen;Zozulya, Sergey;Coss, Christopher C.;Dalton, James T.;Fantus, Ivan George;Trudel, Suzanne. And the article was included in Clinical Cancer Research in 2011.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

PURPOSE: Therapeutic strategies that target insulin-like growth factor 1 receptor (IGF-1R) hold promise in a wide variety of cancers including multiple myeloma (MM). In this study, we describe GTx-134, a novel small-mol. inhibitor of IGF-1R and insulin receptor (IR) and characterized its antitumor activity in preclin. models of MM. Exptl. Design: The activity of GTx-134 as a single agent and in combination was tested in MM cell lines and primary patient samples. Downstream effector proteins and correlation with apoptosis was evaluated. Cytotoxcity in bone marrow stroma coculture experiments was assessed. Finally, the in vivo efficacy was evaluated in a human myeloma xenograft model. RESULTS: GTx-134 inhibited the growth of 10 of 14 myeloma cell lines (<5 μmol/L) and induced apoptosis. Sensitivity to GTx-134 correlated with IGF-1R signal inhibition. Expression of MDR-1 and CD45 were associated with resistance to GTx-134. Coculture with insulin-growth factor-1 (IGF-1) or adherence to bone marrow stroma conferred modest resistance, but did not overcome GTx-134-induced cytotoxicity. GTx-134 showed in vitro synergies when combined with dexamethasone or lenalidomide. Further, GTx-134 enhanced the activity of PD173074, a fibroblast growth factor receptor 3 (FGFR3) inhibitor, against t(4;14) myeloma cells. Therapeutic efficacy of GTx-134 was shown against primary cells and xenograft tumors. Although dysregulation of glucose homeostasis was observed in GTx-134-treated mice, impairment of glucose tolerance was modest. CONCLUSIONS: These studies support the potential therapeutic efficacy of GTx-134 in MM. Further, they provide a rationale for clin. application in combination with established antimyeloma treatments and novel targeted therapies. Clin Cancer Res; 17(14); 4693-704. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Larrieu-Lahargue, Frederic et al. published their research in PLoS One in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Blocking Fibroblast Growth Factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis was written by Larrieu-Lahargue, Frederic;Welm, Alana L.;Bouchecareilh, Marion;Alitalo, Kari;Li, Dean Y.;Bikfalvi, Andreas;Auguste, Patrick. And the article was included in PLoS One in 2012.Product Details of 219580-11-7 The following contents are mentioned in the article:

Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant neg. FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66C14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-pos. lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic mols. such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Product Details of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia