Ye, Yan-Wei et al. published their research in Oncology Reports in 2013 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Combination of the FGFR4 inhibitor PD173074 and 5-fluorouacil reduces proliferation and promotes apoptosis in gastric cancer was written by Ye, Yan-Wei;Hu, Shuang;Shi, Ying-Qiang;Zhang, Xie-Fu;Zhou, Ye;Zhao, Chun-Lin;Wang, Guo-Jun;Wen, Jian-Guo;Zong, Hong. And the article was included in Oncology Reports in 2013.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Our previous findings revealed that FGFR4 may be a novel therapeutic target for gastric cancer. The aim of the present study was to explore the effects of a combination of PD173074 (PD) and 5-fluorouracil (5-Fu) on the biol. behavior of gastric cancer cell lines and the relevant mechanisms involved. MKN45, a gastric cancer cell line, was treated with each single agent alone or a combination of FGF19, PD and 5-Fu. Then, a series of functional assays were performed using CCK-8 assay and flow cytometry. Western blot anal. was used to determine the expression of signaling pathway and downstream-related mols. in the MKN45 cells following the different treatments. As the concentration of PD and 5-Fu increased, the cell viability gradually decreased; the viability of the combination group was less than the viability following single administration. Western blot anal. showed that FGFR4 expression was weak in the 5-Fu-treated groups when compared with the control. PD markedly increased the apoptosis rate of MKN45 cells when compared to the control; the apoptosis rate in the cells treated with the combination of PD and 5-Fu was higher than that in the cells following single treatment. Furthermore, PD reduced the expression of p-ERK and Bcl-xl and increased caspase-3 expression. Inhibition of the activity of FGFR4 may be the main mechanisms of PD effect while 5-Fu reduced FGFR4 expression. Furthermore, the effects of the combination of 5-Fu and PD in inhibiting proliferation, increasing apoptosis and arresting cell cycle were superior to these effects following the single agent treatments, suggesting that the two drugs applied in combination may contribute to the effective treatment of gastric cancer. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lee, Jeeyoun et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Product Details of 1373423-53-0

Jmjd3 Mediates Neuropathic Pain by Inducing Macrophage Infiltration and Activation in Lumbar Spinal Stenosis Animal Model was written by Lee, Jeeyoun;Choi, Haeyoung;Park, Chansol;Jeon, Sangryong;Yune, Taeyoung. And the article was included in International Journal of Molecular Sciences in 2021.Product Details of 1373423-53-0 The following contents are mentioned in the article:

Lumbar spinal stenosis (LSS) is a major cause of chronic neuropathic back and/or leg pain. Recently, we demonstrated that a significant number of macrophages infiltrated into the cauda equina after compression injury, causing neuroinflammation, and consequently mediating neuropathic pain development and/or maintenance. However, the mol. mechanisms underlying macrophage infiltration and activation have not been elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in blood-nerve barrier dysfunction following macrophage infiltration and activation in LSS rats. The LSS rat model was induced by cauda equina compression using a silicone block within the epidural spaces of the L5-L6 vertebrae with neuropathic pain developing 4 wk after compression. We found that Jmjd3 was induced in the blood vessels and infiltrated macrophages in a rat model of neuropathic pain. The blood-nerve barrier permeability in the cauda equina was increased after compression and significantly attenuated by the Jmjd3 demethylase inhibitor, GSK-J4. GSK-J4 also inhibited the expression and activation of MMP-2 and MMP-9 and significantly alleviated the loss of tight junction proteins and macrophage infiltration. Furthermore, the activation of a macrophage cell line, RAW 264.7, by LPS was significantly alleviated by GSK-J4. Finally, GSK-J4 and a potential Jmjd3 inhibitor, gallic acid, significantly inhibited mech. allodynia in LSS rats. Thus, our findings suggest that Jmjd3 mediates neuropathic pain development and maintenance by inducing macrophage infiltration and activation after cauda equina compression and thus may serve as a potential therapeutic target for LSS-induced neuropathic pain. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Product Details of 1373423-53-0).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Product Details of 1373423-53-0

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Katagi, Hiroaki et al. published their research in Clinical Cancer Research in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C24H27N5O2

Radiosensitization by histone H3 Demethylase inhibition in diffuse intrinsic pontine glioma was written by Katagi, Hiroaki;Louis, Nundia;Unruh, Dusten;Sasaki, Takahiro;He, Xingyao;Zhang, Ali;Ma, Quanhong;Piunti, Andrea;Shimazu, Yosuke;Lamano, Jonathan B.;Carcaboso, Angel M.;Tian, Xiao;Seluanov, Andrei;Gorbunova, Vera;Laurie, Kathryn L.;Kondo, Akihide;Wadhwani, Nitin R.;Lulla, Rishi;Goldman, Stewart;Venneti, Sriram;Becher, Oren J.;Zou, Lihua;Shilatifard, Ali;Hashizume, Rintaro. And the article was included in Clinical Cancer Research in 2019.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

Purpose: Radiotherapy (RT) has long been and remains the only treatment option for diffuse intrinsic pontine glioma (DIPG). However, all patients show evidence of disease progression within months of completing RT. No further clin. benefit has been achieved using alternative radiation strategies. Here, we tested the hypothesis that histone demethylase inhibition by GSK-J4 enhances radiation-induced DNA damage, making it a potential radiosensitizer in the treatment of DIPG. Exptl. Design: We evaluated the effects of GSK-J4 on genes associated with DNA double-strand break (DSB) repair in DIPG cells by RNA sequence, ATAC sequence, and quant. real-time PCR. Radiation-induced DNA DSB repair was analyzed by immunocytochem. of DSB markers γH2AX and 53BP1, DNA-repair assay, and cell-cycle distribution. Clonogenic survival assay was used to determine the effect of GSK-J4 on radiation response of DIPG cells. In vivo response to radiation monotherapy and combination therapy of RT and GSK-J4 was evaluated in patient-derived DIPG xenografts. Results: GSK-J4 significantly reduced the expression of DNA DSB repair genes and DNA accessibility in DIPG cells. GSK-J4 sustained high levels of γH2AX and 53BP1 in irradiated DIPG cells, thereby inhibiting DNA DSB repair through homologous recombination pathway. GSK-J4 reduced clonogenic survival and enhanced radiation effect in DIPG cells. In vivo studies revealed increased survival of animals treated with combination therapy of RT and GSK-J4 compared with either monotherapy. Conclusions: Together, these results highlight GSK-J4 as a potential radiosensitizer and provide a rationale for developing combination therapy with radiation in the treatment of DIPG. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chudasama, Priya et al. published their research in Clinical Cancer Research in 2017 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Application of 219580-11-7

Targeting Fibroblast Growth Factor Receptor 1 for Treatment of Soft-Tissue Sarcoma was written by Chudasama, Priya;Renner, Marcus;Straub, Melanie;Mughal, Sadaf S.;Hutter, Barbara;Kosaloglu, Zeynep;Schwessinger, Ron;Scheffler, Matthias;Alldinger, Ingo;Schimmack, Simon;Persigehl, Thorsten;Kobe, Carsten;Jager, Dirk;von Kalle, Christof;Schirmacher, Peter;Beckhaus, Marie-Kristin;Wolf, Stephan;Heining, Christoph;Groschel, Stefan;Wolf, Jurgen;Brors, Benedikt;Weichert, Wilko;Glimm, Hanno;Scholl, Claudia;Mechtersheimer, Gunhild;Specht, Katja;Frohling, Stefan. And the article was included in Clinical Cancer Research in 2017.Application of 219580-11-7 The following contents are mentioned in the article:

Altered FGFR1 signaling has emerged as a therapeutic target in epithelial malignancies. In contrast, the role of FGFR1 in soft-tissue sarcoma (STS) has not been established. Prompted by the detection and subsequent therapeutic inhibition of amplified FGFR1 in a patient with metastatic leiomyosarcoma, we investigated the oncogenic properties of FGFR1 and its potential as a drug target in patients with STS. The frequency of FGFR1 amplification and overexpression, as assessed by FISH, microarray-based comparative genomic hybridization and mRNA expression profiling, SNP array profiling, and RNA sequencing, was determined in three patient cohorts. The sensitivity of STS cell lines with or without FGFR1 alterations to genetic and pharmacol. FGFR1 inhibition and the signaling pathways engaged by FGFR1 were investigated using viability assays, colony formation assays, and biochem. anal. Increased FGFR1 copy number was detected in 74 of 190 (38.9%; cohort 1), 13 of 79 (16.5%; cohort 2), and 80 of 254 (31.5%; cohort 3) patients. FGFR1 overexpression occurred in 16 of 79 (20.2%, cohort 2) and 39 of 254 (15.4%; cohort 3) patients. Targeting of FGFR1 by RNA interference and small-mol. inhibitors (PD173074, AZD4547, BGJ398) revealed that the requirement for FGFR1 signaling in STS cells is dictated by FGFR1 expression levels, and identified the MAPK-ERK1/2 axis as critical FGFR1 effector pathway. These data identify FGFR1 as a driver gene in multiple STS subtypes and support FGFR1 inhibition, guided by patient selection according to the FGFR1 expression and monitoring of MAPK-ERK1/2 signaling, as a therapeutic option in this challenging group of diseases. Clin Cancer Res; 23(4); 962-73. ©2016 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Application of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Cuenca, Marc Vila et al. published their research in Nephrology, Dialysis, Transplantation in 2020 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Most exposed: the endothelium in chronic kidney disease was written by Cuenca, Marc Vila;Hordijk, Peter L.;Vervloet, Marc G.. And the article was included in Nephrology, Dialysis, Transplantation in 2020.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Accumulating evidence indicates that the pathol. changes of the endothelium may contribute to the development of cardiovascular complications in chronic kidney disease (CKD). Non-traditional risk factors related to CKD are associated with the incidence of cardiovascular disease, but their role in uremic endothelial dysfunction has often been disregarded. In this context, soluble α-Klotho and vitamin D are of importance to maintain endothelial integrity, but their concentrations decline in CKD, thereby contributing to the dysfunction of the endothelial lining. These hormonal disturbances are accompanied by an increment of circulating fibroblast growth factor-23 and phosphate, both exacerbating endothelial toxicities. Furthermore, impaired renal function leads to an increment of inflammatory mediators, reactive oxygen species and uremic toxins that further aggravate the endothelial abnormalities and in turn also inhibit the regeneration of disrupted endothelial lining. Here, we highlight the distinct endothelial alterations mediated by the abovementioned non-traditional risk factors as demonstrated in exptl. studies and connect these to pathol. changes in CKD patients, which are driven by endothelial disturbances, other than atherosclerosis. In addition, we describe therapeutic strategies that may promote restoration of endothelial abnormalities by modulating imbalanced mineral homoeostasis and attenuate the impact of uremic retention mols., inflammatory mediators and reactive oxygen species. A clin. perspective on endothelial dysfunction in CKD may translate into reduced structural and functional abnormalities of the vessel wall in CKD, and ultimately improved cardiovascular disease. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lin, Han-Chieh et al. published their research in Journal of Gastroenterology and Hepatology in 2014 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.SDS of cas: 219580-11-7

Beneficial effects of dual vascular endothelial growth factor receptor/fibroblast growth factor receptor inhibitor brivanib alaninate in cirrhotic portal hypertensive rats was written by Lin, Han-Chieh;Huang, Yi-Tsau;Yang, Ying-Ying;Lee, Pei-Chang;Hwang, Lih-Hwa;Lee, Wei-Ping;Kuo, Ying-Ju;Lee, Kuei-Chuan;Hsieh, Yun-Cheng;Liu, Ren-Shyan. And the article was included in Journal of Gastroenterology and Hepatology in 2014.SDS of cas: 219580-11-7 The following contents are mentioned in the article:

Background and Aim : Vascular endothelial (VEGF) and fibroblast growth factor (FGF)-induced hepatic stellate (HSCs) and liver endothelial cells (LECs) activation accelerates hepatic fibrogenesis and angiogenesis, and hemodynamic dysarrangements in cirrhosis. VEGF targeting agents had been reported as potential drugs for cirrhosis. However, the evaluation of effects of dual VEGF/FGF targeting agent in cirrhosis is still limited. Methods : Using hemodynamic parameters, blood chem., primary isolated HSCs and LECs, histol., and digital imaging, we assess the effects of 2-wk brivanib alaninate, a dual VEGFR/FGFR inhibitor, treatment in the pathophysiol. of bile duct-ligated-cirrhotic rats. Results : Fibrogenic and angiogenic markers in the serum and liver of bile duct-ligated-cirrhotic rats, including hydroxyproline, transforming growth factor-β1, angiopoietin-1, VEGF, FGF-2, endocan and phosphorylated-VEGFR2/VEGFR2, and phosphorylated-FGFR/FGFR together with hepatic CD31/angiopoietin-1 expressions (immunohistochem. staining), angiogenesis (micro-computed tomog. scan), microcirculatory dysfunction (in vivo miscroscopy and in situ liver perfusion study), portal hypertension, and hyperdynamic circulations (colored microsphere methods) were markedly suppressed and ameliorated by brivanib alaninate treatment. In in vitro study, acute brivanib alaninate incubation inhibited the transforming growth factor-β1-induced HSCs contraction/migration and VEGF-induced LECs angiogenesis. Concomitantly, the overexpression of various fibrogenic and angiogenic markers in HSCs and LECs, and in their culture media, was increased in parallel and these changes were suppressed by acute brivanib alaninate incubation. Conclusions : This study demonstrated that brivanib alaninate targeting multiple mechanisms and working in the different pathogenic steps of the complications of cirrhotic rats with portal hypertension. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7SDS of cas: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.SDS of cas: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Gao, Zhao-wei et al. published their research in Acta Pharmacologica Sinica in 2021 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Synthetic Route of C22H23N5O2

Vagal-α7nAChR signaling is required for lung anti-inflammatory responses and arginase 1 expression during an influenza infection was written by Gao, Zhao-wei;Li, Ling;Huang, Yuan-yuan;Zhao, Cai-qi;Xue, Shuang-jia;Chen, Jie;Yang, Zhong-zhou;Xu, Jin-fu;Su, Xiao. And the article was included in Acta Pharmacologica Sinica in 2021.Synthetic Route of C22H23N5O2 The following contents are mentioned in the article:

Vagal circuit-α7 nicotinic acetylcholine receptor (α7nAChR, coded by Chrna7) signaling can modulate lung proinflammatory responses. Arginase 1 (ARG1) plays a crucial role in the resolution of lung inflammation. However, whether vagal-α7nAChR signaling can regulate lung inflammation and ARG1 expression during an influenza infection is elusive. Here, we found that lung and spleen IL-4+ cells and lung ARG1 expression were reduced; however, bronchoalveolar lavage (BAL) protein and leukocytes and lung inflammatory cytokines were increased in PR8 (A/Puerto Rico/8/1934, H1N1)-infected vagotomized mice when compared to the control. In PR8-infected α7nAChR-deficient mice, lung Arg1, Il10, and Socs3 expression and BAL Ly6C+CD206+ cells were reduced. PR8-infected Chrna7+/+ recipient mice reconstituted with Chrna-/- bone marrow had a lower survival as compared to PR8-infected Chrna7+/+ recipient mice reconstituted with Chrna7+/+ bone marrow. Mechanistically, the activation of α7nAChR by its agonist GTS-21 could enhance IL-4-induced Arg1 expression, reduced Nos2, and TNF-α expression in PR8-infected bone marrow-derived macrophages (BMDM). Stimulation with IL-4 increased phosphorylation of STAT6 and activation of α7nAChR increased STAT6 binding with the ARG1 promoter and relieved IL-4-induced H3K27me3 methylation by increasing JMJD3 expression in PR8-infected BMDM. Inhibition of JMJD3 increased H3K27me3 methylation and abolished α7nAChR activation and IL-4 induced ARG1 expression. Activation of α7nAChR also reduced phosphorylation of AKT1 and contained FOXO1 in the nucleus. Knockdown of Foxo1a reduced α7nAChR activation and IL-4 induced Arg1 expression in PR8-infected BMDM. Therefore, vagal-α7nAChR signaling is a novel therapeutic target for treating lung inflammatory responses during an influenza infection. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Synthetic Route of C22H23N5O2).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Synthetic Route of C22H23N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Roller, Devin G. et al. published their research in Molecular Cancer Therapeutics in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Recommanded Product: 219580-11-7

Synthetic Lethal Screening with Small-Molecule Inhibitors Provides a Pathway to Rational Combination Therapies for Melanoma was written by Roller, Devin G.;Axelrod, Mark;Capaldo, Brian J.;Jensen, Karin;Mackey, Aaron;Weber, Michael J.;Gioeli, Daniel. And the article was included in Molecular Cancer Therapeutics in 2012.Recommanded Product: 219580-11-7 The following contents are mentioned in the article:

Recent data show that extracellular signals are transmitted through a network of proteins rather than hierarchical signaling pathways, suggesting that the inhibition of a single component of a canonical pathway is insufficient for the treatment of cancer. The biol. outcome of signaling through a network is inherently more robust and resistant to inhibition of a single network component. In this study, we conducted a functional chem. genetic screen to identify novel interactions between signaling inhibitors that would not be predicted on the basis of our current understanding of signaling networks. We screened over 300 drug combinations in nine melanoma cell lines and have identified pairs of compounds that show synergistic cytotoxicity. The synergistic cytotoxicities identified did not correlate with the known RAS and BRAF mutational status of the melanoma cell lines. Among the most robust results was synergy between sorafenib, a multikinase inhibitor with activity against RAF, and diclofenac, a nonsteroidal anti-inflammatory drug (NSAID). Drug substitution experiments using the NSAIDs celecoxib and ibuprofen or the MAP-ERK kinase inhibitor PD325901 and the RAF inhibitor RAF265 suggest that inhibition of COX and mitogen-activated protein kinase signaling are targets for the synergistic cytotoxicity of sorafenib and diclofenac. Cotreatment with sorafenib and diclofenac interrupts a pos. feedback signaling loop involving extracellular signal-regulated kinase, cellular phospholipase A2, and COX. Genome-wide expression profiling shows synergy-specific downregulation of survival-related genes. This study has uncovered novel functional drug combinations and suggests that the underlying signaling networks that control responses to targeted agents can vary substantially, depending on unexplored components of the cell genotype. Mol Cancer Ther; 11(11); 2505-15. ©2012 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Recommanded Product: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Fischer, Jennifer et al. published their research in Journal of Cellular Physiology in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Computed Properties of C28H41N7O3

Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis was written by Fischer, Jennifer;Knoch, Natalie;Sims, Tanja;Rosshirt, Nils;Richter, Wiltrud. And the article was included in Journal of Cellular Physiology in 2018.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Early loss of up to 50% of cells is common for in vitro chondrogenesis of mesenchymal stromal cells (MSC) in pellet culture, reducing the efficacy and the tissue yield for cartilage engineering. Enhanced proliferation could compensate for this unwanted effect, but relevant signaling pathways remain largely unknown. The aim of this study was to identify the contribution of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and hedgehog (HH) signaling toward cell proliferation during chondrogenesis and investigate whether a further mitogenic stimulation is possible and promising. Human MSC were subjected to chondrogenesis in the presence or absence of pathway inhibitors or activators up to Day 14 or from Days 14 to 28, before proliferation, DNA and proteoglycan content were quantified. [3H]-thymidine incorporation revealed arrest of proliferation on Day 3, after which cell division was reinitiated. Although BMP signaling was essential for proliferation throughout chondrogenesis, IGF signaling was relevant only up to Day 14. In contrast, FGF and HH signaling drove proliferation only from Day 14 onward. Early BMP4, IGF-1, or FGF18 treatment neither prevented early cell loss nor allowed further mitogenic stimulation. However, application of the HH-agonist purmorphamine from Day 14 increased proliferation 1.44-fold (p < 0.05) and late BMP4-application enhanced the DNA and proteoglycan content, with significant effects on tissue yield. Conclusively, a differential and phase-dependent contribution of the four pathways toward proliferation was uncovered and BMP4 treatment was promising to enhance tissue yield. Culture forms less prone to size limitations by nutrient/oxygen gradients and a focus on early apoptosis prevention may be considered as the next steps to further enhance chondrocyte formation from MSC. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Pardo, Olivier E. et al. published their research in Cancer Research in 2009 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Computed Properties of C28H41N7O3

The Fibroblast Growth Factor Receptor Inhibitor PD173074 Blocks Small Cell Lung Cancer Growth in vitro and in vivo was written by Pardo, Olivier E.;Latigo, John;Jeffery, Rosemary E.;Nye, Emma;Poulsom, Richard;Spencer-Dene, Bradley;Lemoine, Nick R.;Stamp, Gordon W.;Aboagye, Eric O.;Seckl, Michael J.. And the article was included in Cancer Research in 2009.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Lung cancer is the commonest cancer killer. Small cell lung cancer (SCLC) is initially chemosensitive, but rapidly relapses in a chemoresistant form with an overall survival of <5%. Consequently, novel therapies are urgently required and will likely arise from an improved understanding of the disease biol. Our previous work showed that fibroblast growth factor-2 induces proliferation and chemoresistance in SCLC cells. Here, we show that the selective fibroblast growth factor receptor (FGFR) inhibitor PD173074 blocks H-510 and H-69 SCLC proliferation and clonogenic growth in a dose-dependent fashion and prevents FGF-2-induced chemoresistance. These effects correlate with the inhibition of both FGFR1 and FGFR2 transphosphorylation. We then determined the efficacy of daily oral administration of PD173074 for 28 days in two human SCLC models. In the H-510 xenograft, tumor growth was impaired similar to that seen with single-agent cisplatin administration, increasing median survival compared with control sham-treated animals. Crucially, the effect of cisplatin was significantly potentiated by coadministration of PD173074. More dramatically, in H-69 xenografts, PD173074 induced complete responses lasting >6 mo in 50% of mice. These effects were not a consequence of disrupted tumor vasculature but instead correlated with increased apoptosis (caspase 3 and cytokeratin 18 cleavage) in excised tumors. Moreover, in vivo imaging with 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomog. ([18F]FLT-PET) showed decreased intratumoral proliferation in live animals treated with the compound at 7 to 14 days. Our results suggest that clin. trials of FGFR inhibitors should be undertaken in patients with SCLC and that [18F]FLT-PET imaging could provide early in vivo evidence of response. [Cancer Res 2009;69(22):8645-51]. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia