Lin, Hui-Ping et al. published their research in Phytotherapy Research in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Combined Treatment of Curcumin and Small Molecule Inhibitors Suppresses Proliferation of A549 and H1299 Human Non-Small-Cell Lung Cancer Cells was written by Lin, Hui-Ping;Kuo, Li-Kuo;Chuu, Chih-Pin. And the article was included in Phytotherapy Research in 2012.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clin. application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 渭 m) with a low concentration (0.1-2.5 渭 m) of small mol. inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-魏B signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dhaliwal, Anandika et al. published their research in Scientific Reports in 2018 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C24H27N5O2

Engineering Lineage Potency and Plasticity of Stem Cells using Epigenetic Molecules was written by Dhaliwal, Anandika;Pelka, Sandra;Gray, David S.;Moghe, Prabhas V.. And the article was included in Scientific Reports in 2018.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

Stem cells are considered as a multipotent regenerative source for diseased and dysfunctional tissues. Despite the promise of stem cells, the inherent capacity of stem cells to convert to tissue-specific lineages can present a major challenge to the use of stem cells for regenerative medicine. We hypothesized that epigenetic regulating mols. can modulate the stem cell’s developmental program, and thus potentially overcome the limited lineage differentiation that human stem cells exhibit based on the source and processing of stem cells. In this study, we screened a library of 84 small mol. pharmacol. agents indicated in nucleosomal modification and identified a sub-set of specific mols. that influenced osteogenesis in human mesenchymal stem cells (hMSCs) while maintaining cell viability in-vitro. Pre-treatment with five candidate hits, Gemcitabine, Decitabine, I-CBP112, Chidamide, and SIRT1/2 inhibitor IV, maximally enhanced osteogenesis in-vitro. In contrast, five distinct mols., 4-Iodo-SAHA, Scriptaid, AGK2, CI-amidine and Delphidine Chloride maximally inhibited osteogenesis. We then tested the role of these mols. on hMSCs derived from aged human donors and report that small epigenetic mols., namely Gemcitabine and Chidamide, can significantly promote osteogenic differentiation by 5.9- and 2.3-fold, resp. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Milacic, Marija et al. published their research in Cancers in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C28H41N7O3

Annotating cancer variants and anti-cancer therapeutics in Reactome was written by Milacic, Marija;Haw, Robin;Rothfels, Karen;Wu, Guanming;Croft, David;Hermjakob, Henning;D’Eustachio, Peter;Stein, Lincoln. And the article was included in Cancers in 2012.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Reactome describes biol. pathways as chem. reactions that closely mirror the actual phys. interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and phys. entity classes that uses disease ontol. terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biol. pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network anal. tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biol. behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Sarkar, Sourav et al. published their research in Open Biology in 2017 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C28H41N7O3

FGFR3 – TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle was written by Sarkar, Sourav;Ryan, Ellis L.;Royle, Stephen J.. And the article was included in Open Biology in 2017.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-pos. cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in these cells have not been explored. TACC3 is a mitotic spindle protein required for accurate chromosome segregation. Errors in segregation lead to aneuploidy, which can contribute to cancer progression. Here we show that FT3-pos. bladder cancer cells have lower levels of endogenous TACC3 on the mitotic spindle, and that this is sufficient to cause mitotic defects. FT3 is not localized to the mitotic spindle, and by virtue of its TACC domain, recruits endogenous TACC3 away from the spindle. Knockdown of the fusion gene or low-level overexpression of TACC3 partially rescues the chromosome segregation defects in FT3-pos. bladder cancer cells. This function of FT3 is specific to TACC3 as inhibition of FGFR3 signalling does not rescue the TACC3 level on the spindle in these cancer cells. Models of FT3-mediated carcinogenesis should, therefore, include altered mitotic functions of TACC3 as well as altered FGFR3 signalling. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yin, Xiaojiao et al. published their research in Biomedicine & Pharmacotherapy in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Synthetic Route of C24H27N5O2

The role and prospect of JMJD3 in stem cells and cancer was written by Yin, Xiaojiao;Yang, Siyu;Zhang, Mingyue;Yue, Ying. And the article was included in Biomedicine & Pharmacotherapy in 2019.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

A review. Currently, stem cells are reported to be involved in tumor formation, drug resistance and recurrence. Inhibiting the proliferation of tumor cells, promoting their senescence and apoptosis has been the most important anti-tumor therapy. Epigenetics is involved in the regulation of gene expression and is closely related to cancer and stem cells. It mainly includes DNA methylation, histone modification, and chromatin remodeling. Histone methylation and demethylation play an important role in histone modification. Histone 3 lysine 27 trimethylation (H3K27me3) induces transcriptional inhibition and plays an important role in gene expression. Jumonji domain-containing protein-3 (JMJD3), one of the demethyases of histone H3K27me3, has been reported to be associated with the prognosis of many cancers and stem cells differentiation. Inhibition of JMJD3 can reduce proliferation and promote apoptosis in tumor cells, as well as suppress differentiation in stem cells. GSK-J4 is an inhibitor of demethylase JMJD3 and UTX, which has been shown to possess anti-cancer and inhibition of embryonic stem cells differentiation effects. In this review, we examine how JMJD3 regulates cellular fates of stem cells and cancer cells and references were identified through searches of PubMed, Medline, Web of Science. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kim, Junho et al. published their research in Biotechnology Progress in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Regulation of autocrine fibroblast growth factor-2 signaling by perfusion flow in 3D human mesenchymal stem cell constructs was written by Kim, Junho;Ma, Teng. And the article was included in Biotechnology Progress in 2012.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Perfusion bioreactor systems play a crucial role in mitigating nutrient limitation as well as providing biomech. stimuli and redistributing regulatory macromols. that influence human mesenchymal stem cells (hMSC) fate in three-dimensional (3D) scaffolds. As fibroblast growth factor-2 (FGF-2) is known to regulate hMSC phenotype, understanding the role of autocrine FGF-2 signaling in the 3D construct under the different perfusion flow provides important insight into an optimal bioreactor design. To investigate FGF-2 signaling inhibition in hMSC cultured in the porous poly(ethylene terephthalate) (PET) scaffolds perfused under two flow configurations, PD173074, an FGFR1 inhibitor, was added in growth media after 7 day of pre-culture and its impact on hMSC proliferation and clonogenicity during the subsequent 7 days of cultivation was analyzed. Compared with control constructs in growth media, the addition of PD173074 resulted in significant reduction in hMSC proliferation and colony formation in both constructs with a more dramatic reduction in the parallel flow constructs. The results demonstrate that autocrine FGF-2 plays a significant role in 3D scaffold and suggest modulation of the perfusion flow in the bioreactor as a strategy to influence autocrine actions and cell fate in the 3D scaffold. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ishii, Shunsuke et al. published their research in Scientific Reports in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Identification of a factor controlling lysosomal homeostasis using a novel lysosomal trafficking probe was written by Ishii, Shunsuke;Matsuura, Akira;Itakura, Eisuke. And the article was included in Scientific Reports in 2019.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Lysosomes are largely responsible for significant degradation of intracellular and extracellular proteins via the secretory pathway, autophagy, and endocytosis. Therefore, dysregulation of lysosomal homeostasis influences diverse cellular functions. However, a straightforward and quant. method to measure the integrity of the lysosomal pathway has not been developed. Here, we report the plasmid-based lysosomal-METRIQ (MEasurement of protein Transporting integrity by RatIo Quantification) probe that enables simple quantification of lysosomal integrity by lysosomal green and cytosolic red fluorescent proteins using a flow cytometer. In cultured cells, the lysosomal-METRIQ probe detected not only suppression of the lysosomal pathway but also upregulation of lysosomal activity such as lysosomal biogenesis. To identify factors involved in lysosomal homeostasis, we carried out compound screening and found that the cyclin-dependent kinase (CDK) inhibitors kenpaullone and purvalanol A induce synthesis of cathepsin D and an increase in the number of lysosomes. Subsequent studies revealed that CDK5 maintains lysosomal homeostasis independently of cell cycle arrest. Our results suggest that the lysosomal-METRIQ probe is an effective and efficient tool for measuring lysosomal activity in mammalian cells. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Gulay, Kevin Christian Montecillo et al. published their research in Journal of Genetics and Genomics in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Category: pyrimidines

KDM2B promotes cell viability by enhancing DNA damage response in canine hemangiosarcoma was written by Gulay, Kevin Christian Montecillo;Aoshima, Keisuke;Shibata, Yuki;Yasui, Hironobu;Yan, Qin;Kobayashi, Atsushi;Kimura, Takashi. And the article was included in Journal of Genetics and Genomics in 2021.Category: pyrimidines The following contents are mentioned in the article:

Epigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma (HSA) have not been studied. In this study, we find that lysine-specific demethylase 2 b (KDM2B) is highly expressed in HSA cell lines compared with normal canine endothelial cells. Silencing of KDM2B in HSA cells results in increased cell death in vitro compared with the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced KDM2B silencing in tumor xenografts results in decreased tumor sizes compared with the control. Furthermore, KDM2B is also highly expressed in clin. cases of HSA. We hypothesize that pharmacol. KDM2B inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treat HSA cells with GSK-J4, a histone demethylase inhibitor, and find that GSK-J4 treatment also induces apoptosis and cell death. In addition, GSK-J4 treatment decreases tumor size. Therefore, we demonstrate that KDM2B acts as an oncogene in HSA by enhancing the DNA damage response. Moreover, we show that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Category: pyrimidines).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kleszcz, Robert et al. published their research in European Journal of Pharmaceutical Sciences in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C24H27N5O2

The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells was written by Kleszcz, Robert;Skalski, Marcin;Krajka-Kuzniak, Violetta;Paluszczak, Jaroslaw. And the article was included in European Journal of Pharmaceutical Sciences in 2021.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chems. on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, resp. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, resp., can be regarded as a novel therapeutic strategy in HNSCC. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lhuissier, Eva et al. published their research in IUBMB Life in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Electric Literature of C24H27N5O2

Antiproliferative effect of the histone demethylase inhibitor GSK-J4 in chondrosarcomas was written by Lhuissier, Eva;Aury-Landas, Juliette;Allas, Lyess;Boittin, Martine;Boumediene, Karim;Bauge, Catherine. And the article was included in IUBMB Life in 2019.Electric Literature of C24H27N5O2 The following contents are mentioned in the article:

Chondrosarcoma (CS) is the second most common malignant bone sarcoma. Its treatment remains an issue, because this tumor is radio- and chemo-resistant. In the present study, we investigated the antitumoral potential of GSK-J4, a small mol. described as an inhibitor of histone demethylases UTX and JMJD3 (KDM6A and KDM6B), alone or in combination with cisplatin in CSs. Human CS-derived cell lines were treated with GSK-J4 in the presence or not of cisplatin. Survival curves were established and cell proliferation and cycle were evaluated by flow cytometry using dividing cell tracking technique utilizing carboxyfluorescein succinimidyl ester labeling, or DNA staining by propidium iodide. Apoptosis and senescence were also investigated. GSK-J4 decreased proliferation of CS cells. Addnl., it induced apoptosis in CH2879 and JJ012 cells, but not in SW1353 CSs. In addition, its association with cisplatin decreased cell proliferation more than drugs alone, whereas it did not increase apoptosis compared to cisplatin alone. Interestingly, GSK-J4 alone as well as in association with cisplatin did not affect chondrocyte survival or proliferation. In conclusion, this study suggests that demethylase inhibitors may be useful in improving therapy for CS in reducing its proliferation. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Electric Literature of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Electric Literature of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia