Burchenal, J. H. et al. published their research in Cancer Research in 1982 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Product Details of 69256-17-3

Activity of 2-fluoro-5-methylarabinofuranosyluracil against mouse leukemias sensitive to and resistant to 1-β-D-arabinofuranosylcytosine was written by Burchenal, J. H.; Chou, T. C.; Lokys, L.; Smith, R. S.; Watanabe, K. A.; Su, T. L.; Fox, J. J.. And the article was included in Cancer Research on July 31,1982.Product Details of 69256-17-3 The following contents are mentioned in the article:

A new pyrimidine nucleoside, 2′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (I) [69256-17-3] was active against mouse and human leukemic cells in culture and against mouse leukemias L1210, P388, and P815 in vivo. In contrast to other 1-β-D-arabinofuranosylcytosine (ara-C) [147-94-4] derivatives, I, when given either i.p. or orally, was highly active against lines of leukemias P815 and L1210 made resistant to ara-C. Against P815/ara-C and L1210/ara-C, it is more effective than is 5- azacytidine, a drug which has shown definite effectiveness in patients with acute leukemia resistant to ara-C. Thus, I may be useful in treatment of ara-C resistant leukemias. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Product Details of 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Product Details of 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Snyder, Ronald D. et al. published their research in Chemico-Biological Interactions in 1984 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Computed Properties of C10H13FN2O5

The inhibition of ultraviolet radiation-induced DNA repair in human diploid fibroblasts by arabinofuranosyl nucleosides was written by Snyder, Ronald D.; Van Houten, Bennett; Regan, James D.. And the article was included in Chemico-Biological Interactions on June 30,1984.Computed Properties of C10H13FN2O5 The following contents are mentioned in the article:

The antiviral compounds 9-β-D-arabinofuranosyladenine (ara-A), 9-β-D-arabinofuranosyl-2-fluoroadenine (FAA), 9-β-D-arabinofuranosylhypoxanthine (ara-Hx), 9-β-D-arabinofuranosylguanine (ara-G), 1-β-D-arabinofuranosylthymine (ara-T), 1-β-D-arabinofuranosyl-2′-fluorocytosine (FAC), 1-β-D-arabinofuranosyl-2′-fluoro-5-iodocytosine (FIAC), and 1-β-D-arabinofuranosyl-2′-fluoro-5-methyluracil (FMAU) were compared to 1-β-D-arabinofuranosyl cytosine (ara-C) in their ability to inhibit UV light-induced DNA repair in log phase and confluent human diploid fibroblasts. Inhibition of the polymerization or ligation steps of DNA excision repair manifests itself in the form of DNA single-strand breaks which may be quantitated through velocity sedimentation anal. in alk. sucrose gradients. In UV-irradiated quiescent, confluent human fibroblast cultures, treatment with any of the aranucleosides leads to accumulation of single-strand breaks but the ED for this inhibition varies greatly. The order of their effectiveness in confluent cultures was ara-C and its derivatives >ara-A, FAA, ara-G, Ara-HX > ara-T. In rapidly cycling cells, on the other hand, sensitivity to repair inhibition was exhibited only in response to ara-C and FAC. If 2 mM hydroxyurea (HU) was administered with ara-A, FAA, or FMAU, however, DNA strand breaks were seen. HU also increased the efficiencies of ara-C and FAC. No strand breaks were observed in UV-irradiated log-phase cells treated with FIAC, ara-Hx, ara-G, or ara-T even in the presence of HU. The efficiencies of inhibition of unscheduled DNA synthesis (UDS) and semiconservative DNA synthesis by the aranucleosides is consistent with their relative efficiencies at producing strand breaks. The ability of the aranucleosides to inhibit DNA is discussed with respect to their hypothesized effects on DNA metabolic processes in eukaryotic cells. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Computed Properties of C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Computed Properties of C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Wang, J. et al. published their research in Biochemical Pharmacology in 2000 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

Expression of human mitochondrial thymidine kinase in Escherichia coli: correlation between the enzymatic activity of pyrimidine nucleoside analogues and their inhibitory effect on bacterial growth was written by Wang, J.; Su, C.; Neuhard, J.; Eriksson, S.. And the article was included in Biochemical Pharmacology on June 15,2000.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione The following contents are mentioned in the article:

Mitochondrial thymidine kinase (TK2) phosphorylates pyrimidine nucleosides to monophosphates and is expressed constitutively through the cell cycle in all cells. Because of the overlap of its substrate specificity with that of the cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), it has been difficult to determine the role of TK2 in activating nucleosides used in chemotherapy. In this report, we described the construction of a recombinant Escherichia coli strain which could be used to test if TK2 activity is limiting for the toxicity of nucleosides. Enzymes of bacterial origin which are involved in thymidine and deoxyuridine anabolism and catabolism were eliminated, and the cDNA for human TK2 was introduced. In the crude extract of the engineered E. coli, the level of thymidine kinase was, after induction of TK2 expression, several hundred fold higher than in the control strain. Several pharmacol. interesting nucleoside analogs, including 3′-azidothymidine, 2′,3′-didehydro-2′,3′-dideoxythymidine, and 2′,3′-dideoxy-β-l-3′-thiacytidine, were tested for their effects on the growth of this recombinant strain. For a comparison, the phosphorylation of these compounds was determined with purified recombinant TK1, TK2, and dCK. A correlation was observed between the phosphorylation of several of these compounds by TK2 and their effects on bacterial growth. These results demonstrate that activation of growth-inhibiting pyrimidine nucleosides can be catalyzed by TK2, and together with recombinant E. coli strains expressing other cellular nucleoside kinases, this whole-cell bacterial system may serve as a tool to predict the efficacy and side effects of chemotherapeutic nucleosides. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Fourel, I. et al. published their research in Journal of Medical Virology in 1992 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Computed Properties of C10H13FN2O5

Effects of 2′-fluorinated arabinosyl-pyrimidine nucleosides on duck hepatitis B virus DNA level in serum and liver of chronically infected ducks was written by Fourel, I.; Li, J.; Hantz, O.; Jacquet, C.; Fox, J. J.; Trepo, C.. And the article was included in Journal of Medical Virology on June 30,1992.Computed Properties of C10H13FN2O5 The following contents are mentioned in the article:

The 2′-fluorinated arabinosyl-pyrimidine nucleosides, 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodocytosine (FIAC) and 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-methyluracil (FMAU), are 2 new antiviral compounds with in vitro inhibitory activity against the DNA polymerase of hepadnaviruses. Those compounds also induced permanent inhibition of viral replication in woodchucks chronically infected by woodchuck hepatitis virus. The effects of these antiviral compounds were assessed in ducks chronically infected by duck hepatitis B virus (DHBV). Following i.p. administration for 5 days, FMAU (2 mg/kg/day) and FIAC (10 mg/kg/day) induced a transient decrease in DHBV replication, as shown by the decrease in both the serum and live DHBV DNA level. After stopping therapy, DHBV replication rebounded immediately to the pretreatment level. The supercoiled form of liver viral DNA was found to be less affected by the therapy. By contrast, no obvious antiviral effect was observed with vidarabine monophosphate (ara-AMP) (80 mg/kg/day) therapy. No sign of toxicity was observed during the course of the treatment. These preliminary results confirmed in the DHBV model the higher efficacy of FIAC and FMAU as compared to ara-AMP. Pharmacokinetic studies are needed to explain the differences observed in viral replication in these 2 models of HBV infection. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Computed Properties of C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Computed Properties of C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Plotnik, David A. et al. published their research in Journal of Nuclear Medicine in 2010 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C10H13FN2O5

Different modes of transport for 3H-thymidine, 3H-FLT and 3H-FMAU in proliferating and nonproliferating human tumor cells was written by Plotnik, David A.; Emerick, Lindsay E.; Krohn, Kenneth A.; Unadkat, Jashvant D.; Schwartz, Jeffrey L.. And the article was included in Journal of Nuclear Medicine on September 30,2010.Formula: C10H13FN2O5 The following contents are mentioned in the article:

The basis for the use of nucleoside tracers in PET is that activity of the cell-growth-dependent enzyme thymidine kinase 1 is the rate-limiting factor driving tracer retention in tumors. Recent publications suggest that nucleoside transporters might influence uptake and thereby affect the tracer signal in vivo. Understanding transport mechanisms for different nucleoside PET tracers is important for evaluating clin. results. This study examined the relative role of different nucleoside transport mechanisms in uptake and retention of [methyl-3H]-3′-deoxy-3′-fluorothymidine (3H-FLT), [methyl-3H]-thymidine (3H-thymidine), and 3H-1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-methyluracil (3H-FMAU). Methods: Transport of 3H-FLT, 3H-thymidine, and 3H-FMAU was examined in a single human adenocarcinoma cell line, A549, under both nongrowth and exponential-growth conditions. Results: 3H-Thymidine transport was dominated by human equilibrative nucleoside transporter 1 (hENT1) under both growth conditions. 3H-FLT was also transported by hENT1, but passive diffusion dominated its transport. 3H-FMAU transport was dominated by human equilibrative nucleoside transporter 2. Cell membrane levels of hENT1 increased in cells under exponential growth, and this increase was associated with a more rapid rate of uptake for both 3H-thymidine and 3H-FLT. 3H-FMAU transport was not affected by changes in growth conditions. All 3 tracers concentrated in the plateau phase, nonproliferating cells at levels many-fold greater than their concentration in buffer, in part because of low levels of nucleoside metabolism, which inhibited tracer efflux. Conclusion: Transport mechanisms are not the same for 3H-thymidine, 3H-FLT, and 3H-FMAU. Levels of hENT1, an important transporter of 3H-FLT and 3H-thymidine, increase as proliferating cells enter the cell cycle. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Formula: C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Wilds, Christopher J. et al. published their research in Nucleic Acids Research in 2000 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C10H13FN2O5

2′-Deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2’F-ANA): synthesis and physicochemical studies was written by Wilds, Christopher J.; Damha, Masad J.. And the article was included in Nucleic Acids Research on September 15,2000.Formula: C10H13FN2O5 The following contents are mentioned in the article:

Recently, hybrids of RNA and D-arabinonucleic acids (ANA) as well as the 2′-deoxy-2′-fluoro-D-arabinonucleic acid analog (2’F-ANA) were shown to be substrates of RNase H. This enzyme is believed to be involved in the primary mechanism by which antisense oligonucleotides cause a reduction in target RNA levels in vivo. To gain a better understanding of the properties of arabinose based oligonucleotides, we have prepared a series of 2’F-ANA sequences of homopolymeric (A and T) and mixed base composition (A, T, G and C). UV thermal melting and circular dichroic (CD) studies were used to ascertain the thermodn. stability and helical conformation of 2’F-ANA/RNA and 2’F-ANA/DNA hybrids. It is shown that 2’F-ANA has enhanced RNA affinity relative to that of DNA and phosphorothioate DNA. The 2′-fluoroarabino modification showed favorable pairing to single-stranded DNA also. This is in sharp contrast to ANA, which forms weak ANA/DNA hybrids at best. According to the measured thermodn. parameters for duplex formation, the increased stability of hybrids formed by 2’F-ANA (e.g., 2’F-ANA/RNA) appears to originate from conformational pre-organization of the fluorinated sugars and a favorable enthalpy of hybridization. In addition, NMR spectroscopy revealed a five-bond coupling between the 2’F and the base protons (H6/H8) of 2′-deoxy-2′-fluoro-β-D-arabinonucleosides. This observation is suggesting of a through-space interaction between 2’F and H6/H8 atoms. CD experiments indicate that 2’F-ANA/RNA hybrids adopt an ‘A-like’ structure and show more resemblance to DNA/RNA hybrids than to the pure RNA/RNA duplex. This feature is believed to be an important factor in the mechanism that allows RNase H to discriminate between 2’F-ANA/RNA (or DNA/RNA) and RNA/RNA duplexes. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Formula: C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Carnrot, Cecilia et al. published their research in Protein Science in 2008 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Safety of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

Mechanisms of substrate selectivity for Bacillus anthracis thymidylate kinase was written by Carnrot, Cecilia; Wang, Liya; Topalis, Dimitri; Eriksson, Staffan. And the article was included in Protein Science on September 30,2008.Safety of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione The following contents are mentioned in the article:

Bacillus anthracis is well known in connection with biol. warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5′-monophosphate (dTMP) efficiently with Km and Vmax values of 33 μM and 48 μmol mg-1 min-1, resp. The efficiency of deoxyuridine-5′-monophosphate phosphorylation was âˆ?0% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2′-fluoroarabinosyl-5-methyldeoxyuridine-5′-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5′-monophosphate (5FdUMP) and 2′,3′-dideoxy-2′,3′-didehydrothymidine-5′-monophosphate (d4TMP). No activity could be detected with 3′-azidothymidine-5′-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and D-FMAU was a strong inhibitor with an IC50 value of 10 μM, while other nucleosides-L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2′-arabinosylthymidine-were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Safety of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Safety of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Chou, Ting Chao et al. published their research in Antimicrobial Agents and Chemotherapy in 1987 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

Synthesis and biological effects of 2′-fluoro-5-ethyl-1-β-D-arabinofuranosyluracil was written by Chou, Ting Chao; Kong, Xiang Bin; Fanucchi, Michael P.; Cheng, Yung Chi; Takahashi, Kiyobumi; Watanabe, Kyoichi A.; Fox, Jack J.. And the article was included in Antimicrobial Agents and Chemotherapy on September 30,1987.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione The following contents are mentioned in the article:

2′-Fluoro-5-ethyl-1-β-D-arabinofuranosyluracil (I) was synthesized, and its biol. activities were compared with those of 5′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (II). Earlier studies indicated that both compounds have potent anti-herpes simplex virus activity, with a ED50 of <0.25 μM. The cell growth inhibitory activity of I (ED50, 200-2,060 μM) was about 100-fold less than that of II. With an ED50 ranging from 630 to 3,700 μM, I only weakly inhibited thymidine incorporation into DNA, as compared with II with an ED50 of 9-28 μM. Following exposure to [2-14C]-I (100 μM), 0.48 pmol/106 cells per h was incorporated into the DNA of herpes simplex virus type 1-infected Vero cells, whereas no detectable incorporation was found in uninfected Vero cells or L1210 cells. The Ki of I for thymidine kinase purified from human leukemic cells was >150 μM. For herpes simplex virus type 1- and 2-encoded thymidine kinases, the Kis were 0.6 and 0.74 μM, resp. Both I and II were relatively nontoxic for mice, with a LD50 of >800 mg/kg/day (4 i.p. doses). However, the LD of I for dogs was 100 mg/kg/day (10 i.v. doses), a dose which is 40-80-fold greater than the toxic dose of II. These results suggest that I is a worthy candidate for further development as an antiherpetic agent. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Mayo, Donald R. et al. published their research in Antimicrobial Agents and Chemotherapy in 1984 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Recommanded Product: 69256-17-3

Treatment of primary acute genital herpes in guinea pigs by intraperitoneal administration of fluoropyrimidines was written by Mayo, Donald R.; Hsiung, G. D.. And the article was included in Antimicrobial Agents and Chemotherapy on September 30,1984.Recommanded Product: 69256-17-3 The following contents are mentioned in the article:

[1-(2′-Deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodocytosine] (FIAC)(I) [69123-90-6], [1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil] (FIAU)(II) [69123-98-4], and [1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-methyluracil] (FMAU)(III) [69256-17-3] were evaluated for their efficacies in the treatment of genital infections with herpes simplex virus type 2 in guinea pigs. I.p. administration of these drugs in daily doses of 100 mg/kg of body weight initiated 24 h after virus inoculation and repeated 2 successive days thereafter inhibited development of genital lesions and reduced shedding of virus without evoking untoward reactions. In a comparative study with this 3-day dosage schedule, the efficacy of daily doses of 50 mg of FMAU per kg was greater than that of the same doses of FIAC and FIAU, in that order; all these were more effective than daily doses of 50, 100, or 200 mg of acyclovir or of 500 mg of phosphonoformic acid per kg. These differences in efficacy were enhanced when treatment was delayed for 2 to 3 days after inoculation. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Recommanded Product: 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Recommanded Product: 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Cheng, Y. C. et al. published their research in Antimicrobial Agents and Chemotherapy in 1981 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 69256-17-3

Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases was written by Cheng, Y. C.; Dutschman, G.; Fox, J. J.; Watanabe, K. A.; Machida, H.. And the article was included in Antimicrobial Agents and Chemotherapy on September 30,1981.Recommanded Product: 69256-17-3 The following contents are mentioned in the article:

The rates of phosphorylation of the potential antiviral nucleoside analogs I (R = I, Me, CH:CHBr; R1 = H, F, OH) and II (R = I, Me) by purified thymidine kinase [9002-06-6] from both human and herpes simplex virus sources were studied. Most of the analogs were phosphorylated by both human and viral kinases. The analogs were competitive inhibitors of thymidine phosphorylation by the kinases; on the assumption that inhibition constants (Ki) reflect binding affinity, Ki values of the analogs were determined In general, the analogs have a greater affinity for the viral kinases than for the human kinases. The amount of the analogs phosphorylated to the monophosphate form, which is presumably necessary for cytotoxic activity, was dependent on both the phosphorylation rates and binding affinities. All of the analogs act as preferential substrates for the viral kinases at low concentrations, which may be one of the main reasons for their selective antiviral action. The structure-activity relations of the analogs are discussed. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Recommanded Product: 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3