Firouzeh, Ebrahim team published research on Journal of Photochemistry and Photobiology, A: Chemistry in 2022 | 4595-59-9

Product Details of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Product Details of C4H3BrN2.

Firouzeh, Ebrahim;Kazemi, Foad;Gholinejad, Mohammad;Kaboudin, Babak research published 《 Visible photosensitized sonogashira-hagihara coupling through in situ prepared palladium catalyst in N,N-dimethylformamide under copper and amine-free additives》, the research content is summarized as follows. In this study, copper and amine-free photosensitized Sonogashira-Hagihara coupling reaction using Pd(OAc)2 and p-nitrobenzophenone in N,N-dimethylformamide(DMF) under blue LED irradiation was reported. Effect of benzophenone, p-methoxybenzophenone and p-nitrobenzophenone as photosensitizers in Sonogashira-Hagihara reaction were studied in which higher yields were achieved using p-nitrobenzophenone. In situ preparation of palladium nanoparticles and the effect of p-nitrobenzophenone were confirmed using UV-Vis and dynamic light scattering (DLS). It was proposed that the DMF affected the formation and stabilization of palladium nanoparticles. Using this catalytic system, aryl iodides and bromides were reacted efficiently with alkynes between 25 and 60°C.

Product Details of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Frippiat, Steven team published research on Synlett in 2020 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Electric Literature of 4595-59-9

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Electric Literature of 4595-59-9.

Frippiat, Steven;Peresson, Antoine;Perse, Thibaut;Ramondenc, Yvan;Schneider, Cedric;Querolle, Olivier;Angibaud, Patrick;Poncelet, Virginie;Meerpoel, Lieven;Levacher, Vincent;Bischoff, Laurent;Baudequin, Christine;Hoarau, Christophe research published 《 Pd(0)-Catalyzed Direct Inter- and Intramolecular C-H Functionalization of 4-Carboxyimidazoles》, the research content is summarized as follows. The palladium-catalyzed arylation and alkenylation of N-substituted Me imidazole-4-carboxylates were described through inter- and intramol. pathways. Both direct C2-H and C5-H arylation and alkenylation proceeded under Pd(0)/Cu(I) cooperative catalysis and Pd(0) catalysis, resp., in low-polarity 1,4-dioxane solvent. The methodol. gave access to C2 (hetero)aryl or alkenyl imidazoles as well as innovative C2- and C5-arylated fused imidazoles tricycles with a five- to seven-membered middle ring.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Electric Literature of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dong, Jianyang team published research on Green Chemistry in 2021 | 4595-59-9

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Formula: C4H3BrN2.

Dong, Jianyang;Yue, Fuyang;Liu, Jianhua;Song, Hongjian;Liu, Yuxiu;Wang, Qingmin research published 《 Visible-light-mediated three-component Minisci reaction for heteroarylethyl alcohols synthesis》, the research content is summarized as follows. Herein, a mild, modular, practical Minisci reaction for catalytic synthesis of heteroarylethyl alcs. such as ArCH(R1)CHR2OH [Ar = quinol-2-yl, isoquinolin-1-yl, 2-benzothiazolyl, etc.; R1R2 = CH2(CH2)2CH2, CH2CH2CH2; R1 = On-Bu, Me; R2 = H, Me] via sequential addition of H2O and N-heteroarenes across olefinic double bonds was reported. This scalable protocol was used for direct hydroxy-heteroarylation of olefins with a wide range of N-heteroarenes and could be expected to permit rapid conversion of abundant feedstock materials into medically relevant mols.

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dong, Weizhe team published research on Organic Letters in 2021 | 4595-59-9

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Formula: C4H3BrN2.

Dong, Weizhe;Badir, Shorouk O.;Zhang, Xuange;Molander, Gary A. research published 《 Accessing Aliphatic Amines in C-C Cross-Couplings by Visible Light/Nickel Dual Catalysis》, the research content is summarized as follows. A general aminoalkylation of aryl halides were developed, overcoming intolerance of free amines in nickel-mediated C-C coupling. This transformation features broad functional group tolerance and high efficiency. Taking advantage of the fast desilylation of α-silylamines upon single-electron transfer (SET) facilitated by carbonate, α-amino radicals were generated regioselectively, which then engage in nickel-mediated C-C coupling. The reaction displays high chemoselectivity for C-C over C-N bond formation. Highly functionalized pharmacophores and peptides were also amenable.

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Duan, Jicheng team published research on Angewandte Chemie, International Edition in 2020 | 4595-59-9

Application In Synthesis of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application In Synthesis of 4595-59-9.

Duan, Jicheng;Wang, Ke;Xu, Guang-Li;Kang, Shaolin;Qi, Liangliang;Liu, Xue-Yuan;Shu, Xing-Zhong research published 《 Cross-Electrophile C(sp2)-Si Coupling of Vinyl Chlorosilanes》, the research content is summarized as follows. The cross-electrophile coupling has become a powerful tool for C-C bond formation, but its potential for forging the C-Si bond remains unexplored. Here we report a cross-electrophile Csp2-Si coupling reaction of vinyl/aryl electrophiles with vinyl chlorosilanes. This new protocol offers an approach for facile and precise synthesis of organosilanes with high mol. diversity and complexity from readily available materials. The reaction proceeds under mild and non-basic conditions, demonstrating a high step economy, broad substrate scope, wide functionality tolerance, and easy scalability. The synthetic utility of the method is shown by its efficient accessing of silicon bioisosteres, the design of new BCB-monomers, and studies on the Hiyama cross-coupling of vinylsilane products.

Application In Synthesis of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Cyr, Patrick team published research on European Journal of Organic Chemistry in 2022 | 4595-59-9

Safety of 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Safety of 5-Bromopyrimidine.

Cyr, Patrick;Joseph-Valcin, Eve-Marline;Boissarie, Patrick;Simoneau, Bruno;Marinier, Anne research published 《 Copper-Catalyzed N1 Coupling of 3-Aminoindazoles and Related Aminoazoles with Aryl Bromides》, the research content is summarized as follows. The N1-selective arylation of 3-aminoindazoles using copper catalysis was reported. The reaction used readily accessible aryl bromides as coupling partners, including those from heterocycles and allowed easy access to a broad variety of substituted 3-aminoindazoles. The methodol. was also examined on other aminoazoles of interest for the pharmaceutical industry.

Safety of 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

da Silva Santos, Bruno Maia team published research on Beilstein Journal of Organic Chemistry in 2021 | 4595-59-9

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. HPLC of Formula: 4595-59-9.

da Silva Santos, Bruno Maia;dos Santos Dupim, Mariana;Paula de Souza, Caue;Cardozo, Thiago Messias;Finelli, Fernanda Gadini research published 《 DABCO-promoted photocatalytic C-H functionalization of aldehydes》, the research content is summarized as follows. A direct application of DABCO, an inexpensive and broadly accessible organic base, as a hydrogen atom transfer (HAT) abstractor in a photocatalytic strategy for aldehyde C-H activation was presented. The acyl radicals generated in this step were arylated with aryl bromides through a well stablished nickel cross-coupling methodol., leading to a variety of interesting aryl ketones in good yields. Computational calculations also performed to shine light in the HAT step energetics and determined an optimized geometry for the transition state, showing that the hydrogen atom transfer between aldehydes and DABCO was a mildly endergonic, yet sufficiently fast step. The same calculations were performed with quinuclidine, for comparison of both catalysts and the differences are discussed.

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Das, Saikat team published research on ACS Catalysis in 2021 | 4595-59-9

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Electric Literature of 4595-59-9.

Das, Saikat;Murugesan, Kathiravan;Villegas Rodriguez, Gonzalo J.;Kaur, Jaspreet;Barham, Joshua P.;Savateev, Aleksandr;Antonietti, Markus;Koenig, Burkhard research published 《 Photocatalytic (Het)arylation of C(sp3)-H Bonds with Carbon Nitride》, the research content is summarized as follows. Mesoporous graphitic carbon nitride(mpg-CN)as a heterogeneous organic semiconductor photocatalyst for direct arylation of sp3 C-H bonds in combination with nickel catalysis are reported. This protocol has a broad synthetic scope (>70 examples including late-stage functionalization of drugs and agrochems.), was operationally simple, and shows high chemo- and regioselectivities. Facile separation and recycling of the mpg-CN catalyst in combination with its low preparation cost, innate photochem. stability, and low toxicity are beneficial features overcoming typical shortcomings of homogeneous photocatalysis. Detailed mechanistic investigations and kinetic studies indicate that an unprecedented energy-transfer process (EnT) from the organic semiconductor to the nickel complex was operated.

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dewan, Anindita team published research on ACS Sustainable Chemistry & Engineering in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., HPLC of Formula: 4595-59-9

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. HPLC of Formula: 4595-59-9.

Dewan, Anindita;Sarmah, Manashi;Bharali, Pankaj;Thakur, Ashim J.;Boruah, Purna K.;Das, Manash R.;Bora, Utpal research published 《 Pd Nanoparticles-Loaded Honeycomb-Structured Bio-nanocellulose as a Heterogeneous Catalyst for Heteroaryl Cross-Coupling Reaction》, the research content is summarized as follows. Distorted honeycomb-like hollow cage-structured bio-nanocellulose (with 1-16.7μm diameters) is derived from cellulosic waste of pomegranate peel using a simple microwave technique in water under neutral conditions without using external chems. in a very short period of time. Pd nanoparticles are loaded onto the bio-nanocellulose surface by simple stirring at room temperature (25°C) and characterized by X-ray diffraction, SEM, transmission electron microscopy, Fourier-transform IR spectroscopy, Brunauer-Emmett-Teller surface area analyses, and so on. The newly developed nanocomposite material has been utilized as an efficient heterogeneous catalyst for the synthesis of potential bioactive biaryl/heterobiaryl and alkynyl/heteroalkynyl derivatives up to 98% yield via the Suzuki-Miyaura and Sonogashira cross-coupling reactions. The catalyst is reusable up to five catalytic cycles without significant loss of its catalytic activity. Waste pomegranate peel-derived honeycomb-like bio-nanocellulose serves as a heterogeneous surface for Pd nanoparticles which catalyze a variety of cross-coupling reactions.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., HPLC of Formula: 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dewan, Anindita team published research on Sustainable Chemistry and Pharmacy in 2021 | 4595-59-9

Computed Properties of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Computed Properties of 4595-59-9.

Dewan, Anindita;Sarmah, Manashi;Bhattacharjee, Prantika;Bharali, Pankaj;Thakur, Ashim J.;Bora, Utpal research published 《 Sustainable nano fibrillated cellulose supported in situ biogenic Pd nanoparticles as heterogeneous catalyst for C-C cross coupling reactions》, the research content is summarized as follows. This manuscript reports the design, synthesis and application of naturally occurring cellulose, generated from agro waste pomegranate peel, as novel support for active biogenic Pd (0) nanoparticles (NPs) for room temperature Suzuki-Miyaura and Sonogashira cross-coupling reactions. The presence of hydroxyl groups and unsaturated hanging bonds on their surfaces in cellulose matrix enable well dispersion of PdNPs over the support matrix to generate Pd@cellulose. This in turn exhibits excellent catalytic activity, easy removal from the reaction mixture, recyclable without loss of catalytic activity for Suzuki-Miyaura and Sonogashira reactions under ligand-free mild reaction conditions. The synthesized cellulosic nanofibers and Pd-anchored heterogeneous nanofibers were characterized by SEM, EDX, TEM, Powder XRD, FT-IR spectroscopy and BET surface anal.

Computed Properties of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia