Brown, Gregory D. team published research on Reaction Chemistry & Engineering in | 4595-59-9

Quality Control of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Quality Control of 4595-59-9.

Brown, Gregory D.;Batalla, Daniel;Cavallaro, Cullen L.;Perez, Heidi L.;Wrobleski, Stephen T.;Sherwood, Trevor C. research published 《 A compact, practical photoreactor for multi-reaction arrays》, the research content is summarized as follows. The Bristol Myers Squibb Photoreactor (BMS-PR) is a convenient, small-footprint platform that enables routine use of photochem. transformations in a variety of laboratory settings. These photoreactors have been engineered to safely irradiate multiple reaction vessels for array synthesis at various wavelengths and temperatures with a more practical setup than most other com. photoreactors. The BMS-PR integrates seamlessly with standard laboratory equipment and incorporates a variety of attractive safety features. Herein we describe the BMS-PR460 device for irradiation of reactions at 460 nm using blue light-emitting diodes (LEDs) and highlight its application with photochem. reactions that may be useful in the discovery of novel drug mols.

Quality Control of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Bag, Sukdev team published research on Nature Communications in 2021 | 4595-59-9

Computed Properties of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Computed Properties of 4595-59-9.

Bag, Sukdev;Jana, Sadhan;Pradhan, Sukumar;Bhowmick, Suman;Goswami, Nupur;Sinha, Soumya Kumar;Maiti, Debabrata research published 《 Imine as a linchpin approach for meta-C-H functionalization》, the research content is summarized as follows. An temporary directing group (TDG) for meta-C-H functionalization via reversible imine formation were reported. By overruling facile ortho-C-H bond activation by imine-N atom, a suitably designed pyrimidine-based TDG successfully delivered selective meta-C-C bond formation. Application of this temporary directing group strategy for streamlining the synthesis of complex organic mols. without any necessary pre-functionalization at the meta position were explored.

Computed Properties of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Baumann, Andreas N. team published research on Chemistry – A European Journal in 2020 | 4595-59-9

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Recommanded Product: 5-Bromopyrimidine.

Baumann, Andreas N.;Reiners, Felix;Siegle, Alexander F.;Mayer, Peter;Trapp, Oliver;Didier, Dorian research published 《 Thiete Dioxides as Templates Towards Twisted Scaffolds and Macrocyclic Structures》, the research content is summarized as follows. Thiete dioxide units were employed as a template for further functionalization through C-H activation strategies. Using simple thiete dioxide building blocks, a new library of axially chiral mols. was synthesized that owe their stability to electrostatic interactions in the solid state. Similar starting materials were further engaged in the formation of cyclic trimeric structures, opening the pathway to unprecedented macrocyclic ring systems.

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Bhandari, Pallab team published research on European Journal of Inorganic Chemistry in 2022 | 4595-59-9

SDS of cas: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. SDS of cas: 4595-59-9.

Bhandari, Pallab;Mondal, Bijnaneswar;Howlader, Prodip;Mukherjee, Partha Sarathi research published 《 Face-Directed Tetrahedral Organic Cage Anchored Palladium Nanoparticles for Selective Homocoupling Reactions》, the research content is summarized as follows. Numerous metalla-supramol. architectures have been designed using coordination-driven self-assembly, while the number of analogous organic architectures is still very limited. In this regard, mainly di-, tri- and a few tetra-aldehydes have been exploited as precursors in combination with appropriate di-/tri-amines to obtain the desired structures with limited complexities. We report here facile synthesis of two face-directed tetrahedral organic cages (TC-R and TC-S) that were formed by [4+12] imine condensation of a new hexa-aldehyde precursor with two enantiomers of 1,2-diaminocyclohexane sep. (CA-R and CA-S). The covalent imine cages are very large with an intrinsic porous cavity of ∼1250 Å and the faces of the cages consist of aromatic aldehyde units whereas each corner is occupied by three semi-flexible diamine moieties. Palladium (PdNPs) nanoparticles (3.5±0.3 nm) were synthesized employing the cage TC-R as a solid support via double-solvent approach. Furthermore, the cage hosted PdNPs [Pd(0)@TC-R-A] exhibited efficient catalytic activity for selective homocoupling of aryl- and hetero-aryl halides with high thermal stability and reusability.

SDS of cas: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Blocka, Aleksandra team published research on Molecules in 2022 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., HPLC of Formula: 4595-59-9

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. HPLC of Formula: 4595-59-9.

Blocka, Aleksandra;Chaladaj, Wojciech research published 《 Tandem Pd-Catalyzed Cyclization/Coupling of Non-Terminal Acetylenic Activated Methylenes with (Hetero)Aryl Bromides》, the research content is summarized as follows. A new method for a tandem Pd-catalyzed intramol. addition of active methylene compounds to internal alkynes ZCH(X)(CH2)3CCR (R = Me, Et, Ph; X = COOMe, CN, C(O)Me, COOi-Pr, SO2Me; Y = COOMe, C(O)Me, C(O)i-Pr, SO2Ph, COOEt) followed by coupling with aryl and heteroaryl bromides R1Br (R1 = Ph, thiophen-2-yl, benzodioxol-5-yl, etc.) was reported. Highly substituted vinylidenecyclopentanes (E)-I were obtained with good yields, complete selectivity, and excellent functional group tolerance. A plausible mechanism, supported by DFT calculations, involves the oxidative addition of bromoarene to Pd(0), followed by cyclization and reductive elimination. The excellent regio- and stereoselectivity arises from the 5-exo-dig intramol. addition of the enol form of the substrate to alkyne activated by the Π-acidic Pd(II) center, postulated as the rate-determining step.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., HPLC of Formula: 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

9/18/21 News Extended knowledge of 4595-59-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4595-59-9, its application will become more common.

Synthetic Route of 4595-59-9 ,Some common heterocyclic compound, 4595-59-9, molecular formula is C4H3BrN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

[0217] Step 2. Pyrimidine-5-carboxaldehyde. To a solution of 5-bromopyrimidine (2 g, 12.58 mmol, 1.00 equiv) in THF (20 mL) placed in a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was added n-butyllithium (1.1 mL) at -78 C. The reaction mixture was stirred at -78 C for another 2 h. Ethyl formate (5.2 mL) was then added and the resulting solution was stirred for 2 h at -78 C. The resulting mixture was warmed to 0C and washed with 50 mL of brine. The organic layer was dried with anhydrous sodium carbonate and concentrated. The residue was purified on a silica gel column eluted with ethyl acetate/petroleum ether (1:1) to give 11 g of crude pyrimidine-5- carboxaldehyde as a yellow oil. TLC: ethyl acetate/petroleum ether (1/1), Rf = 0.2.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4595-59-9, its application will become more common.

Reference:
Patent; GENENTECH, INC.; FORMA TM, LLC; BAIR, Kenneth, W.; BAUMEISTER, Timm, R.; GOSSELIN, Francis; ZAK, Mark; ZHENG, Xiaozhang; WO2013/130935; (2013); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Analyzing the synthesis route of 5-Bromopyrimidine

The synthetic route of 4595-59-9 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 4595-59-9, name is 5-Bromopyrimidine, the common compound, a new synthetic route is introduced below. HPLC of Formula: C4H3BrN2

General procedure: Nucleophile (1-3 mol equiv), tris-(dibenzylideneacetone)dipalladium (2.5 mol %), tris-(2-furyl)phosphine (10 mol %) and potassium carbonate (2 mol equiv) were added to a solution of the aryl halide (1 mmol) in dry dimethylformamide (10 mL) in a Schlenk tube. The reaction mixture was then degassed using the freeze, pump, thaw (F.P.T.) technique (one cycle). Allene gas was then introduced at the required pressure (1 atm) and the Schlenk tube contents stirred and heated at 80 C for 16 h. After cooling and venting, DCM (20 mL) was added and the mixture filtered to remove inorganic salts. The filtrate was concentrated in vacuo and the residue was purified by column chromatography.

The synthetic route of 4595-59-9 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Elboray, Elghareeb E.; Gao, Chuanjun; Grigg, Ronald; Tetrahedron; vol. 68; 14; (2012); p. 3103 – 3111;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Analyzing the synthesis route of 4595-59-9

According to the analysis of related databases, 4595-59-9, the application of this compound in the production field has become more and more popular.

Electric Literature of 4595-59-9, Adding some certain compound to certain chemical reactions, such as: 4595-59-9, name is 5-Bromopyrimidine,molecular formula is C4H3BrN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4595-59-9.

A suspension of 3-amino-6-cyclopropylpyridine-2-carboxylic acid ethyl ester (763 mg, 3.7 mmol), 5-bromopyrimidine (823 mg, 5.2 mmol), water (140 mul, 7.8 mmol) and potassium carbonate (920 mg, 6.7 mmol) in o-xylene (10 ml) was evacuated and vented with argon. Palladium(II) acetate (33 mg, 0.15 mmol,) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos; 107 mg, 0.18 mmol) were consecutively added under inert gas atmosphere and the reaction mixture was heated to 140 C. and stirred overnight. After cooling-down to ambient temperature, the reaction mixture was diluted with dichloromethane (15 ml) and filtrated. The filtrate was concentrated in vacuo and the product was purified by silica gel chromatography using a heptane /ethyl acetate gradient to yield the title compound (796 mg, 75.7%) as light yellow solid. MS: M=285.3 (M+H)+

According to the analysis of related databases, 4595-59-9, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Bleicher, Konrad; Flohr, Alexander; Groebke Zbinden, Katrin; Gruber, Felix; Koerner, Matthias; Kuhn, Bernd; Peters, Jens-Uwe; Sarmiento, Rosa Maria Rodriguez; US2011/306589; (2011); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Simple exploration of 4595-59-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4595-59-9, its application will become more common.

Application of 4595-59-9, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 4595-59-9 as follows.

General procedure: To a stirred solution of aryl halides (2.0 mmol) and thiourea (1.2 equiv) in dry DMSO (2.0 mL) at rt was added nano CuO (5.0 mol %) followed by Cs2CO3 (2.0 equiv) and heated at 110 C for 15 h. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, and a 1:1 mixture of ethyl acetate/water (20 mL) was added. The combined organic extracts were dried with anhydrous Na2SO4. The solvent and volatiles were completely removed under vacuum to give the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 9:1) to afford the corresponding coupling product in excellent yields.Recycling of the catalyst:after the reaction was complete, the reaction mixture was allowed to cool, and a 1:1 mixture of ethyl acetate/water (2.0 mL) was added and CuO was removed by centrifugation. After each cycle, the catalyst was recovered by simple centrifugation, washing with deionized water and ethyl acetate and then drying in vacuo. The recovered nano CuO was used directly in the next cycle.Data of representative examples:Dip-tolylsulfane (Table 3, entry 3): yellow oil;1H NMR (200 MHz, CDCl3, TMS): delta = 7.21 (d, 4H, J = 8.0 Hz), 7.06 (d, 4H, J = 8.0 Hz), 2.32 (s, 6H); 13C NMR (50 MHz, CDCl3, TMS): delta = 136.7, 132.81, 131.0, 129.8, 96.1.Table 3, entry 3): yellow oil;1H NMR (200 MHz, CDCl3, TMS): delta = 7.21 (d, 4H, J = 8.0 Hz), 7.06 (d, 4H, J = 8.0 Hz), 2.32 (s, 6H); 13C NMR (50 MHz, CDCl3, TMS): delta = 136.7, 132.81, 131.0, 129.8, 96.1.Bis(4-ethylphenyl)sulfane (Table 3, entry 4): colorless oil; 1HNMR (300 MHz, CDCl3, TMS): delta = 7.21(d, 4H, J = 7.8 Hz), 7.07 (d, 4H, J = 7.8 Hz), 2.62-2.52 (m, 4H), 1.26 (t, 6H, J = 7.8 Hz);13C NMR (75 MHz, CDCl3, TMS): delta = 143.1, 132.7, 131.0, 128.6, 28.3, 15.4; mass (EI): m/z 242 [M]+; Anal. calcd for: (C16H18S) C, 79.29; H, 7.49; S, 13.23; found: C,79.22; H,7.42; S,13.19.Table 3, entry 4): colorless oil; 1HNMR (300 MHz, CDCl3, TMS): delta = 7.21(d, 4H, J = 7.8 Hz), 7.07 (d, 4H, J = 7.8 Hz), 2.62-2.52 (m, 4H), 1.26 (t, 6H, J = 7.8 Hz);13C NMR (75 MHz, CDCl3, TMS): delta = 143.1, 132.7, 131.0, 128.6, 28.3, 15.4; mass (EI): m/z 242 [M]+; Anal. calcd for: (C16H18S) C, 79.29; H, 7.49; S, 13.23; found: C,79.22; H,7.42; S,13.19.Bis(3-nitrophenyl)sulfane (Table 3, entry 7): pale yellow oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 8.19-8.15 (m, 4H), 7.65 (d, 2H, J = 8.3 Hz), 7.55 (t, 2H, J = 8.3 Hz); 13C NMR (75 MHz, CDCl3, TMS): delta = 148.8, 136.7, 130.7, 125.6, 122.7; mass (EI): m/z 276 [M]+; Anal. calcd for: (C12H8N2O4S) C, 52.17; H, 2.92; S, 11.61; N, 10.14; found: C, 52.12; H, 2.86; S, 11.55; N, 10.9.Table 3, entry 7): pale yellow oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 8.19-8.15 (m, 4H), 7.65 (d, 2H, J = 8.3 Hz), 7.55 (t, 2H, J = 8.3 Hz); 13C NMR (75 MHz, CDCl3, TMS): delta = 148.8, 136.7, 130.7, 125.6, 122.7; mass (EI): m/z 276 [M]+; Anal. calcd for: (C12H8N2O4S) C, 52.17; H, 2.92; S, 11.61; N, 10.14; found: C, 52.12; H, 2.86; S, 11.55; N, 10.9.4,4′-Thiodianiline (Table 3, entry 11): brown solid; mp 104-105 C; 1H NMR (300 MHz, CDCl3, TMS): delta = 7.10 (d, 4H, J = 8.68 Hz), 6.52 (d, 4H, J = 8.68 Hz), 3.51 (br s, 4H); 13C NMR (75 MHz, CDCl3, TMS): delta = 145.5, 133.8, 132.6, 124.8, 115.6; mass (EI): m/z 216 [M]+; Anal. calcd for: (C12H12N2S) C, 66.63; H, 5.59; N, 12.95; S, 14.82; Found: C, 66.61; H, 5.58; N, 12.92; S, 14.81.Table 3, entry 11): brown solid; mp 104-105 C; 1H NMR (300 MHz, CDCl3, TMS): delta = 7.10 (d, 4H, J = 8.68 Hz), 6.52 (d, 4H, J = 8.68 Hz), 3.51 (br s, 4H); 13C NMR (75 MHz, CDCl3, TMS): delta = 145.5, 133.8, 132.6, 124.8, 115.6; mass (EI): m/z 216 [M]+; Anal. calcd for: (C12H12N2S) C, 66.63; H, 5.59; N, 12.95; S, 14.82; Found: C, 66.61; H, 5.58; N, 12.92; S, 14.81.Dithiophen-3-ylsulfane (Table 3, entry 15): yellow oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 7.31-7.25 (m, 2H), 7.17-7.11(m, 2H), 6.96-6.94 (m, 2H); 13C NMR (75 MHz, CDCl3, TMS): delta = 129.6, 126.4, 124.7; mass (EI): m/z 197 [M]+; Anal. calcd for: (C8H6S3) C, 48.45; H, 3.05; S, 48.50; found: C,48.42; H,3.02; S,48.47.Table 3, entry 15): yellow oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 7.31-7.25 (m, 2H), 7.17-7.11(m, 2H), 6.96-6.94 (m, 2H); 13C NMR (75 MHz, CDCl3, TMS): delta = 129.6, 126.4, 124.7; mass (EI): m/z 197 [M]+; Anal. calcd for: (C8H6S3) C, 48.45; H, 3.05; S, 48.50; found: C,48.42; H,3.02; S,48.47.Dipyrimidin-5-ylsulfane (Table 3, entry 17): colorless oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 9.15 (s, 2H), 8.74(s, 4H); 13C NMR (75 MHz, CDCl3, TMS): delta = 158.6, 157.7, 129.8; mass (EI): m/z 190 [M]+; Anal. calcd for: (C8H6N4S) C, 50.51; H, 3.18; N, 29.45; S, 16.86; found: C, 50.45; H, 3.13; N, 29.41; S, 16.81.Table 3, entry 17): colorless oil; 1H NMR (300 MHz, CDCl3, TMS): delta = 9.15 (s, 2H), 8.74(s, 4H); 13C NMR (75 MHz, CDCl3, TMS): delta = 158.6, 157.7, 129.8; mass (EI): m/z 190 [M]+; Anal. calcd for: (C8H6N4S) C, 50.51; H, 3.18; N, 29.45; S, 16.86; f…

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4595-59-9, its application will become more common.

Reference:
Article; Reddy, K. Harsha Vardhan; Reddy, V. Prakash; Shankar; Madhav; Anil Kumar; Nageswar; Tetrahedron Letters; vol. 52; 21; (2011); p. 2679 – 2682;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extended knowledge of 4595-59-9

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4595-59-9, 5-Bromopyrimidine.

Related Products of 4595-59-9, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 4595-59-9, name is 5-Bromopyrimidine. This compound has unique chemical properties. The synthetic route is as follows.

General procedure: Forthe Suzuki-Miyaura reaction, a 50 mL round-bottomed flask was charged with aryl halide(0.5 mmol), arylboronic acid (0.65 mmol), K2CO3 (1 mmol), catalyst (0.002 g; 0.0005 mmol ofPd) and water (4 mL) and stirred at appropriate temperature. The progress of the reaction wasmonitored by thin layer chromatography using aluminum coated TLC plates (Merck) underUV light. At the end of reaction, the mixture was cooled down to room temperature and theproduct diluted with water (10 mL) and extracted with ether (3 x 15 mL). The combinedextract was washed with brine (3 x 15 mL) and dried over Na2SO4. After evaporation of the solventunder reduced pressure, the residue was subjected to column chromatography with ethylacetate/hexane (1:9) as eluent to get the desired product.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4595-59-9, 5-Bromopyrimidine.

Reference:
Article; Hazarika, Munmi; Borah, Debajit; Bora, Popymita; Silva, Ana R.; Das, Pankaj; PLoS ONE; vol. 12; 9; (2017);,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia