Shultz, Zachary team published research in ARKIVOC (Gainesville, FL, United States) in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Formula: C4H3ClN2

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Formula: C4H3ClN2.

Shultz, Zachary;Shan, Chuan;Wojtas, Lukasz;Lopchuk, Justin M. research published 《 A modular approach for the installation of functionalized phosphonates to heterocycles》, the research content is summarized as follows. Phosphonic acids and esters are pervasive throughout the discovery sciences, from medicine and agriculture, to materials and asym. synthesis. The ability to install and construct mol. architecture containing phosphonic functionality has led to the development of new medicines and catalyst systems in the field of organo- and organometallic catalysis. To continue the advancement in the field, improved synthetic access to phosphorous-containing motifs is required. In particular, heterocyclic phosphonates and their acid derivatives are so far underdeveloped. The method described herein provides a robust and operationally simple procedure for the installation of various phosphonates to a wide range of electrophilic heterocycles.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Formula: C4H3ClN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Skrodzki, Maciej team published research in Journal of Catalysis in 2022 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Application In Synthesis of 1722-12-9

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Application In Synthesis of 1722-12-9.

Skrodzki, Maciej;Ortega Garrido, Victor;Csaky, Aurelio G.;Pawluc, Piotr research published 《 Searching for highly active cobalt catalysts bearing Schiff base ligands for Markovnikov-selective hydrosilylation of alkynes with tertiary silanes》, the research content is summarized as follows. The search for simple and easy-to-synthesize ligands for bench stable cobalt (pre)catalysts that would ensure high activity and selectivity in alkyne hydrosilylation reactions is an interesting current challenge. Herein, we report that a cobalt(II) complex bearing pyrimidine-imine-2H-imidazole ligand activated by LiHBEt3 exhibits not only high catalytic activity, but also unprecedented tolerance towards tertiary silanes in highly regioselective Markovnikov hydrosilylation of aliphatic and aromatic terminal alkynes to give α-vinylsilanes. In addition, a variety of 1-aryl-2-(trimethylsilyl)acetylenes have been hydrosilylated efficiently by diphenylsilane in the presence of [Co(L)Cl2]/LiHBEt3 catalytic system to yield (E)-1-aryl-1,2-bis(silyl)ethenes with high selectivity. Such selectivity is very rarely observed for cobalt-catalyzed hydrosilylation of silylacetylenes.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Application In Synthesis of 1722-12-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Slack, Eric D. team published research in Organic Letters in 2021 | 1722-12-9

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Application of C4H3ClN2.

Slack, Eric D.;Colacot, Thomas J. research published 《 Understanding the Activation of Air-Stable Ir(COD)(Phen)Cl Precatalyst for C-H Borylation of Aromatics and Heteroaromatics》, the research content is summarized as follows. A newly developed robust catalyst [Ir(COD)(Phen)Cl] (A) was used for the C-H borylation of three dozen aromatics and heteroaromatics with excellent yield and selectivity. Activation of the catalyst was identified using catalytic amounts of H2O, alcs., etc., when B2pin2 was used in noncoordinating solvents, while for THF catalytic use of HBpin was required. The results were on par with the in situ based expensive system [Ir(OMe)(COD)]2/dtbbpy or Me4Phen.

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Shao, Xin team published research in Organic Letters in 2020 | 1722-12-9

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H3ClN2.

Shao, Xin;Wu, Xinxin;Wu, Shuo;Zhu, Chen research published 《 Metal-Free Radical-Mediated C(sp3)-H Heteroarylation of Alkanes》, the research content is summarized as follows. Herein we disclose a metal-free, N/O-centered radical-promoted Minisci reaction, in which the coupling of various heteroarenes with simple alkanes proceeds under mild conditions. The reaction conditions are neutral; no extra acid is added to preactivate N-heteroarenes in the Minisci reaction. The N-/O-centered radicals are generated directly from amide (TsNHMe) or alc. (CF3CH2OH) under visible-light irradiation This green and eco-friendly synthetic process may find potential use in medicinal chem.

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Shinya, Susumu team published research in Chemical & Pharmaceutical Bulletin in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Safety of 2-Chloropyrimidine.

Shinya, Susumu;Kawai, Kentaro;Tarui, Atsushi;Karuo, Yukiko;Sato, Kazuyuki;Matsuda, Masaya;Kitatani, Kazuyuki;Kobayashi, Naoki;Nabe, Takeshi;Otsuka, Masato;Omote, Masaaki research published 《 Importance of the azole moiety of cimetidine derivatives for the inhibition of human multidrug and toxin extrusion transporter 1 (hMATE1)》, the research content is summarized as follows. The design and synthesis of cimetidine analogs, as well as their inhibitory activity toward the human multidrug and toxin extrusion transporter 1 (hMATE1), which is related to nephrotoxicity of drugs was described. Cimetidine is the histamine H2-receptor antagonist, but also inhibits hMATE1, which is known to cause renal impairment. Cimetidine analogs to evaluate hMATE1 inhibitory activity to reveal whether the analogs could reduce the inhibition of hMATE1 was designed and synthesized. The results showed that all analogs with an unsubstituted guanidino group exhibited hMATE1 inhibitory activity. On the other hand, there was a clear difference in the hMATE1 inhibitory activity for the other compounds That is, compounds with a methylimidazole ring exhibited hMATE1 inhibition, while compounds with a Ph ring did not. The results suggest that the ability to form hydrogen bonds at the azole moiety is strongly involved in the hMATE1 inhibition.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Shultz, Zachary team published research in ARKIVOC (Gainesville, FL, United States) in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Formula: C4H3ClN2

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Formula: C4H3ClN2.

Shultz, Zachary;Shan, Chuan;Wojtas, Lukasz;Lopchuk, Justin M. research published 《 A modular approach for the installation of functionalized phosphonates to heterocycles》, the research content is summarized as follows. Phosphonic acids and esters are pervasive throughout the discovery sciences, from medicine and agriculture, to materials and asym. synthesis. The ability to install and construct mol. architecture containing phosphonic functionality has led to the development of new medicines and catalyst systems in the field of organo- and organometallic catalysis. To continue the advancement in the field, improved synthetic access to phosphorous-containing motifs is required. In particular, heterocyclic phosphonates and their acid derivatives are so far underdeveloped. The method described herein provides a robust and operationally simple procedure for the installation of various phosphonates to a wide range of electrophilic heterocycles.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Formula: C4H3ClN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Saad, M. A. team published research in Materials Today: Proceedings in 2021 | 1722-12-9

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Electric Literature of 1722-12-9.

Saad, M. A.;Abdurahman, N. H.;Yunus, Rosli Mohd research published 《 Synthesis, characterization, and demulsification of water in crude oil emulsion via a corn oil-based demulsifier》, the research content is summarized as follows. Natural product-based materials have gained significant interest in replacing the petroleum-based oil chems. with environmentally friendly materials. A corn oil-based demulsifier has been successfully synthesized by the condensation reaction of corn oil with diethanolamine in the presence of a catalyst applied during separation via a water-in-oil (W/O) emulsion. The demulsifier was characterized by FTIR, GC-MS, and LC-QTOF-MS analyses. The surfactant′s separation efficacy was studied using the Sany-glass test. The results showed that this new product efficiently demulsified the W/O emulsion with 98% separation achieved. The influence of settling time, demulsifier dosage, and temperature on the demulsification efficiency were investigated. The separation efficiency increased with increasing settling time, demulsifier dose and the temperature conditions accelerate the demulsification process. As well, the interfacial tension decreases with increases of the demulsifier dose.

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Santiago, Carlos team published research in European Journal of Organic Chemistry in 2020 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., SDS of cas: 1722-12-9

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. SDS of cas: 1722-12-9.

Santiago, Carlos;Rubio, Ibon;Sotomayor, Nuria;Lete, Esther research published 《 Selective PdII-Catalyzed Acylation of Pyrrole with Aldehydes. Application to the Synthesis of Celastramycin Analogues and Tolmetin》, the research content is summarized as follows. The PdII-catalyzed C-2 acylation of pyrrole with aldehydes in the presence of TBHP as oxidant has been studied for the synthesis of di(hetero)aryl ketones. The use of 2-pyrimidine as directing group leads to 2-acylpyrroles in moderate to good yields, although 2,5-diacylpyrroles are obtained as by products. This side-reaction could be avoided using 3-methyl-2-pyridine as directing group, obtaining selectively 2-acylpyrroles. The reaction has been extended to a series of aromatic and heteroaromatic aldehydes, obtaining the best results with electron rich aromatic aldehydes. The methodol. has been applied in the synthesis of pyrrolomycin alkaloid Celastramycin analogs and for an improved synthesis of Tolmetin (I), a nonsteroidal anti-inflammatory drug.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., SDS of cas: 1722-12-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Santiago, Carlos team published research in Organic & Biomolecular Chemistry in 2022 | 1722-12-9

Quality Control of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Quality Control of 1722-12-9.

Santiago, Carlos;Jimenez-Aberasturi, Xabier;Leicea, Eztizen;Lete, Marta G.;Sotomayor, Nuria;Lete, Esther research published 《 Microwave-assisted palladium catalysed C-H acylation with aldehydes: synthesis and diversification of 3-acylthiophenes》, the research content is summarized as follows. The use of MW allows the efficient palladium(II)-catalyzed C-3 acylation of thiophenes with aldehydes via C(sp2)-H activation for the synthesis of (cyclo)alkyl/aryl thienyl ketones (43 examples). Compared to standard thermal conditions, the use of MW reduces the reaction time (15 to 30 min vs. 1 to 3 h), leading to improved yields of the ketones (up to 92%). The control of positional selectivity is achieved by 2-pyridinyl and 2-pyrimidyl ortho-directing groups at C-2 of the thiophene scaffold. To show the synthetic applicability, selected ketones were subjected to further transformations, including intramol. reactions to directly embed the directing group in the core structure of the new mol.

Quality Control of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Prusty, Namrata team published research in Organic Letters in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Category: pyrimidines

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Category: pyrimidines.

Prusty, Namrata;Banjare, Shyam Kumar;Mohanty, Smruti Ranjan;Nanda, Tanmayee;Yadav, Komal;Ravikumar, Ponneri C. research published 《 Synthesis and Photophysical Study of Heteropolycyclic and Carbazole Motif: Nickel-Catalyzed Chelate-Assisted Cascade C-H Activations/Annulations》, the research content is summarized as follows. Nickel-catalyzed synthesis of polyarylcarbazoles I (R = H, Me; R1 = 4-F, 4-Cl, 4-Br, 5-Me, 5-OMe; R2 = C2H5, C6H5, 4-FC6H4, etc.) and II (R3 = 6-Br, 7-Cl, 8-Me, etc.) through sequential C-H bond activations has been described. Regioselective indole C2/C3 functionalization has been achieved in the presence of indoles III C7-H, which is quite challenging. In addition, this approach also gives easy access to building a heteropolycyclic motif through C6/C7 C-H functionalization of indolines IV. This methodol. is not limited to aromatic internal alkynes R2CCR2 as coupling partners; aliphatic alkynes have also shown good tolerance. Notably, during the optimization the catalytic enhancement with sodium iodide as an additive has been observed The photophys. properties of these highly conjugated mols. were obtained.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia