Extended knowledge of 148-51-6

In some applications, this compound(148-51-6)SDS of cas: 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Chemistry of vitamin B6. IX. Derivatives of 5-deoxypyridoxine, published in 1953, which mentions a compound: 148-51-6, mainly applied to , SDS of cas: 148-51-6.

cf. C.A. 47, 8745g. The 5-deoxy derivatives (I) of pyridoxine (II), pyridoxal (III), and pyridoxamine (IV) were prepared and characterized. The I can participate normally in biochemical reactions involving the substituent at the 4-position but cannot be phosphorylated like II, III, and IV. As expected the I had no vitamin B6 activity but were effective antimetabolites. Codecarboxylase has been catalytically hydrogenated to 5-deoxypyridoxine (V); both II and III yielded under the same conditions a mixture of 4-deoxypyridoxine (VI) and V. The absorption spectra of 5-deoxypyridoxal (VII) (recorded) and pure pyridoxal-5-phosphate (codecarboxylase) (VIII) at pH 11.0 and 1.9, resp., are almost identical. The deep yellow color of both VII and VIII in alk. solution together with other absorption characteristics is ascribed to a quinoid structure. 2-Methyl-3-hydroxy-4-methoxymethyl-5-chloromethylpyridine (IX).HCl (2.38 g.) in 125 cc. MeOH was shaken with H in the presence of 2 g. 5% Pd-Darco, the mixture filtered, and the filtrate concentrated to 20 cc. to yield 1.5 g. (75%) 2,5-dimethyl-3-hydroxy-4-methoxymethylpyridine (X).HCl, m. 152-3° (from EtOH-Et2O). IX.HCl (23.7 g.) reduced similarly in 2 equal portions, each one in 600 cc. MeOH with 5 g. Pd catalyst yielded 19.0 g. (94%) X.HCl. X.HCl (1.47 g.) in 50 cc. 4N HCl heated 3 hrs. at 180-90° in a sealed tube, the colorless solution filtered, the filtrate concentrated to dryness, and the H2O removed azeotropically with EtOH and C6H6 yielded 0.96 g. (70%) V.HCl, m. 143-3.5° (from EtOH-Et2O); treated with excess NaHCO3 gave V, m. 181-2° (from EtOH). X.HCl was treated in H2O with NaHCO3, the mixture concentrated in vacuo and extracted with Et2O, the extract evaporated, 3.1 g. of the residual free base heated 18 hrs. with 50 cc. MeOH and 50 cc. liquid NH3 in a sealed tube, the mixture evaporated in vacuo to dryness, MeOH added and removed twice by distillation, and the residue extracted with Et2O to leave 1.86 g. (60%) 5-deoxypyridoxamine (XI); m. 160-1° (from MeOH); 2,5-dimethyl-3-p-toluenesulfonoxy-4-p-toluenesulfonylaminopyridine-HCl, m. 194-5° (from EtOH). A small sample of XI was heated 20 min. with Ac2O on a steam bath, the solution concentrated to dryness, the residue treated with EtOH, distilled to dryness, dissolved in HCl, treated with Darco, neutralized with NaHCO3, chilled, and the crystalline deposit recrystallized from C6H6 containing a few drops EtOH to give 2,5-dimethyl-3-acetoxy-4-acetylaminomethylpyridine, m. 174-5°. V.HCl (5.7 g.) was stirred 2 hrs. at 60-70° with 2.8 g. MnO2, 1.5 cc. H2SO4, and 75 cc. H2O, the mixture filtered, the filtrate concentrated in vacuo, the sirup taken up in 15 cc. H2O, excess solid AcONa added, and the thick, crystalline precipitate cooled, filtered off, and washed with ice water to give 1.30 g. (29%) VII, m. 108-9° (from petr. ether); the aqueous filtrate from VII gave with 2 g. NH2OH.HCl 0.9 g. (18%) oxime of VII, m. 239-40° (decomposition) (from EtOH). To the aqueous filtrate of a similar run were added 12 g. NaOAc and 4.5 g. NH2OH.HCl and the mixture was heated 10 min. on a steam bath to yield 2.43 g. (49%) oxime of VII. VII in CHCl3 treated with excess alc. HCl, the solution evaporated in vacuo to dryness, a little H2O added and removed in vacuo, and the residue treated with CHCl3 yielded VII.HCl, m. 191-3° (decomposition). VII (90 mg.) in 1 cc. H2O was cooled in ice, the pH adjusted to 11 with 6N NaOH, 4 drops 30% H2O2 added, the mixture adjusted to pH 3 with HCl and cooled, and the precipitate washed with H2O, EtOH, and Et2O to yield 70 mg. (85%) 2,5-dimethyl-3,4-dihydroxypyridine, decomposed 262-70°. Crude Ca codecarboxylase (0.5 g.) was suspended in H2O and treated with 0.7 cc. 6N HCl, the mixture filtered, the filtrate diluted to 50 cc. shaken 2.25 hrs. at atm. pressure with H and 0.5 g. 10% Pd-C, filtered and concentrated to dryness in vacuo, the residue dissolved in about 3 cc. H2O, the solution treated with excess solid NaHCO3, filtered, the filter residue washed with H2O, the combined filtrate and washings were concentrated in vacuo to 5 cc., the concentrate extracted 21 hrs. continuously with CHCl3, the extract evaporated, and the residue treated with alc. HCl and precipitated with Et2O to give 0.07 g. V.HCl, m. 140-1°. III.HCl (0.35 g.) was treated with 0.10 g. CaO and 0.17 g. H3PO4 and hydrogenated similarly to give 0.08 g. (24%) VI.HCl, m. 264-5°, and 0.11 g. (33%) V.HCl; the aqueous filtrate left from the CHCl3-extraction was concentrated to dryness, the residue extracted with EtOH, and the extract acidified with alc. HCl to give 0.11 g. (30%) I.HCl. Similar hydrogenation of 0.40 g. I.HCl in 0.3 cc. 6N HCl and 50 cc. H2O for 4-5 hrs. gave 0.16 g. (42%) VI.HCl and 0.09 g. (24%) V.HCl. Attempted similar hydrogenation of V gave only recovered starting material.

In some applications, this compound(148-51-6)SDS of cas: 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The influence of catalyst in reaction 148-51-6

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Application of 148-51-6 and due to space limitations, I can only present the most important information.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 148-51-6, is researched, Molecular C8H12ClNO2, about Convulsive seizure induced by intracerebral injection of semicarbazide (an anti-vitamin B6) in the mouse, the main research direction is semicarbazide convulsion; antivitamin B6 convulsion.Application of 148-51-6.

Intracerebral injection of semicarbazide-HCl (I) [563-41-7] was more effective than systemic administration in inducing convulsions and tremors in mice. The symptoms were prevented by pyridoxine [65-23-6], aminooxyacetic acid [645-88-5] and acetone [67-64-1], but were enhanced by pyridoxal [66-72-8], pyridoxal phosphate [54-47-7] and other anti-B6 agents. Smaller doses of I were required for induction of the symptoms in vitamin B6-deficient mice than in controls. I applied to the vicinity of the lambda caused running fits, followed by convulsions and tremors.

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Application of 148-51-6 and due to space limitations, I can only present the most important information.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Decrypt The Mystery Of 148-51-6

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Product Details of 148-51-6 and due to space limitations, I can only present the most important information.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Degradation of Cyclohexane to Benzene》. Authors are Willstatter, Richard; Hatt, Daniel.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Product Details of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

cf. C. A., 6, 748.-The prepare of cyclohexene by heating cyclohexanol with (CO2H)2 (Zelinskii and Zelikov, Ber., 34, 3251) gives poor yields owing to the formation (15 g. from 60 g. of alc.) of dicyclohexyl oxalate, (CO2 C6H11)2, quadratic leaves, m. 42°. Brunel’s method (use of KHSO4, Bull. soc. chim. 33, 270) gives an 80% yield, together with (C6H11)2O, b. 97-8.5°,b737 259-40° (Ipatiev and Philipov, C. A., 3, 1014, give the b. p. as 275-7°). Cyclohexene dibromide, heated 9 hrs. at 110-5° in scaled tubes with 6 mols. NHMe2 in 18% C6H6 solution, gave 75% of δ-dimethylaminocyclohexene, b725 89-91.5°, b725 160.5-2.5°. Chloroplatinate, prisms, m. 185°. Methiodide, needles, m. 173-4° 1,3-Cyclohexadiene prepared by Crossley’s method from cyclohexene dibromide and quinoline (J.Chem.Soc., 85, 1403) contains cyclohexene, bromocyclohexene and C6H6 (20% of the latter in 145 g. of the crude product). Obtained pure by Harries’ method (C. A., 6, 108), It b72, 78.3-8.8°, d420 0.8404, nD20 1.47439,nα20 1.47025,nβ20 1.48516, nγ20 1.49491, MD 26.77, Mα 26.59, Mβ 27.19, Mγ 27.55, Mγ-α 0.97. It quickly absorbs 4 ats.H in the presence of Pt. With NHMe2 in cold concentrateC6H6 solution, the dibromide gives quant. Δ2-tetramethyldiaminocyclohexene, b10 90.5-2.5°, b725 219.5-3-5°, d40 0.920. Chloroplatinate, rhombic tablets, blacken 240°, decompose 259-60°. Methiodide, microscopic quadratic tables, m. 236° (decompose); the quaternary base obtained by the action of Ag2O on the methiodide, decompose, on evaporation of the solution, into C6H6 and NMe2, the temperature of decompose depending on the pressure (98-104° at atm. pressure with an 80-5% yield of C6H4; 40-50° under 20° mm.; -3° to 5° under 0.008-0.02 mm.

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Product Details of 148-51-6 and due to space limitations, I can only present the most important information.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extended knowledge of 148-51-6

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride and due to space limitations, I can only present the most important information.

Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Comparative study of the use of microörganisms in the screening of potential antitumor agents.

Collaborative studies were organized to include 16 microbial systems, with bacteria, fungi, and protozoa as the assay microörganisms. A series of 200 compounds were studied. It appears that 95% of the compounds adjudged to be tumor-active in animal assays can be detected by virtue of their inhibitory effects on microörganisms, with as few as 4 selected bioassay systems. 34 references

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride and due to space limitations, I can only present the most important information.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 148-51-6

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Formula: C8H12ClNO2 and due to space limitations, I can only present the most important information.

Sawaya, Christina; Horton, Roger; Meldrum, Brian published the article 《Transmitter synthesis and convulsant drugs: effects of pyridoxal phosphate antagonists and allylglycine》. Keywords: convulsant brain transmitter pyridoxal phosphate.They researched the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ).Formula: C8H12ClNO2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:148-51-6) here.

Glutamic acid decarboxylase (EC 4.1.1.15) (I) [9024-58-2] and dopa decarboxylase (EC 4.1.1.26) (II) [9042-64-2] in mouse brain homogenates were inhibited after administration of methyldithiocarbazinate [5397-03-5] (45 mg/kg, i.p.), thiosemicarbazide [79-19-6] (100 mg/kg, i.p.), or 4-deoxypyridoxine-HCl (III) [148-51-6] (250 mg/kg, i.p.); addition of pyridoxal phosphate [54-47-7] abolished the inhibition. I activity was inhibited by allylglycine (IV) [3182-77-2] in vivo (200 mg/kg, i.p.) and in vitro whereas II activity was unaffected. III (250 mg/kg, i.p.) decreased brain GABA [56-12-2] levels, increased homovanillic acid [306-08-1] and 5-hydroxyindoleacetic acid [54-16-0] levels, and did not alter dopamine [51-61-6] and serotonin [50-67-9] levels. Brain GABA levels were decreased by IV while monoamine and monoamine metabolite levels were unchanged. Inhibition of II activity is not the primary or critical mechanism in the convulsant action of hydrazides and IV.

When you point to this article, it is believed that you are also very interested in this compound(148-51-6)Formula: C8H12ClNO2 and due to space limitations, I can only present the most important information.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extended knowledge of 148-51-6

In some applications, this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about [N,N-Bis(2-chloroethyl)-1,2-ethanediamine-N,N’]bis(3-methyl-2,4-pentanedionato-O,O’)cobalt(III) perchlorate: a potential hypoxia selective anticancer agent, the main research direction is mol structure cobalt chloroethylethanediamine methylpentanedionato.Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.

Crystals of the title compound are monoclinic, space group P21/c, with a 17.229(3), b 10.817(5), c 14.851(6) Å, and β 110.78(3)°; Z = 4, dc = 1.462; R(F2) = 0.050, Rw(F2) = 0.160 for 4049 reflections. The coordination geometry about Co is typical of an octahedral trischelate complex. The Co-N bond length involving the tertiary N atom of the bis(chloroethyl)ethanediamine ligand [2.092(4) Å] is significantly longer than that to the primary N atom [1.931(4) Å].

In some applications, this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

What I Wish Everyone Knew About 148-51-6

In some applications, this compound(148-51-6)Related Products of 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Seizures induced by allylglycine, 3-mercaptopropionic acid, and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glutamic acid decarboxylase.Related Products of 148-51-6.

The title drugs caused seizures in mice (i.p.) and baboons (i.v.) and, at subconvulsant levels, enhanced photo-induced seizures in baboons. Addition of pyridoxal phosphate [54-47-7] to mouse brain homogenate relieved inhibition of L-glutamate 1-carboxylase [9074-87-7] by 4-deoxypyridoxine-HCl [148-51-6] but not by DL-allylglycine [7685-44-1]. 3-Mercaptopropionic acid [107-96-0] was the most powerful competitive inhibitor of the enzyme.

In some applications, this compound(148-51-6)Related Products of 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The important role of 148-51-6

In some applications, this compound(148-51-6)SDS of cas: 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

SDS of cas: 148-51-6. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Amino derivatives of pyridoxine and its analogs. Author is Yakovleva, N. L.; Balyakina, M. V.; Gunar, V. L..

I [(R = OH, R1 = Me, R2 = CH2OH (II); RR1 = OCMe2CH2O, R2 = CHOH; R = OH, R1 = CH2OH, R2 = Me] with OP(NMe2)3 gave III [R = OH, R1 = Me, R2 = CH2NMe2 (IV); R = OH, R1 = CH2OH, R2 = CH2NMe2; R = OH, R1 = CH2 NMe2, R2 = Me]. Heating II with SOCl2 gave I (R = OH, R1 = Me, R2 = CH2Cl), which was transformed to IV by reaction with Me2NH. Reaction of V (R3 = Cl) with HNMe2 gave V (R3 = NMe2).

In some applications, this compound(148-51-6)SDS of cas: 148-51-6 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Get Up to Speed Quickly on Emerging Topics: 148-51-6

I hope my short article helps more people learn about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Formula: C8H12ClNO2. Apart from the compound(148-51-6), you can read my other articles to know other related compounds.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Compounds affecting the development of housefly larvae》. Authors are Gouck, H. K.; LaBrecque, G. C..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Formula: C8H12ClNO2. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Larval medium (50 g.) was saturated with 100 ml. of water containing 0.5-0.1 g. of the compound and 100 housefly eggs added. After 4 days it was examined for larvae and 3 days later for pupae. Emerging flies laid their eggs on untreated medium after 7 days. A sample of eggs remained in the medium, which was examined for larvae. The flies of this generation were reared to the adult stage. Compounds (245) are listed which are larvicides at 0.5 g. but not at 0.1 g. dosage; 64 compounds are larvicides at a dosage of ≤0.1 g.; 19 cause mortality in the pupal stage. 1,4-Bis(3-hydroxypropionyl)piperazine dimethanesulfonate causes low oviposition or failure of eggs to hatch at 0.05 and 0.025%, low enough to permit some adult emergence.

I hope my short article helps more people learn about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Formula: C8H12ClNO2. Apart from the compound(148-51-6), you can read my other articles to know other related compounds.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Discover the magic of the 148-51-6

I hope my short article helps more people learn about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6. Apart from the compound(148-51-6), you can read my other articles to know other related compounds.

SDS of cas: 148-51-6. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Preparation of 4-deoxypyridoxine hydrochloride.

The method developed by Wibault et al. (1960) was slightly modified. Thus, nitration of 3-cyano-4,6-dimethyl-2(1H)-pyridone was effected with 65:35 HNO3-Ac2O at 40-5°, whereby explosion hazards were substantially reduced. Thin-layer chromatog. of the 5-nitro derivative on silica gel (Stahl II) with 1:3 MeOH-C6H6 gave Rf 0.73-0.74. In the subsequent chlorination step, the amount of POCl3 was increased and the heating time considerably prolonged to improve the yield of the chlorinated product (Rf 0.76 with 1:3 C5H12-C6H6 on silica gel).

I hope my short article helps more people learn about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6. Apart from the compound(148-51-6), you can read my other articles to know other related compounds.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia