Flexible application of in synthetic route 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Patzer, Emmons M.; Hilker, Doris M. published an article about the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl ).Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:148-51-6) through the article.

Gas-chromatog. separation of 4 vitamin B6 derivatives consisted of converting them into hemiacetals with EtOH, refluxing at 125° for 15 min, evaporating the excess EtOH at 70° under N, and adding the new reagent N-methylbistrifluoroacetamide [685-27-8], followed by refluxing at 125° for 20 min and injecting the samples onto a column packed with 5% silicone oil on Chromosorb P and using flame ionization detection. The compounds derivatized were pyridoxine-HCl (I) [58-56-0], pyridoxamine-di-HCl [524-36-7], deoxypyridoxine-HCl [148-51-6] and pyridoxal-HCl [65-22-5]. The min. detectable amount is ∼250 ng. The procedure is rapid, clean, and simple.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ) is researched.Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.Singh, R. P.; Korytnyk, W. published the article 《Pyridoxine chemistry. VII. Some modifications in the 4-position of pyridoxol》 about this compound( cas:148-51-6 ) in Journal of Medicinal Chemistry. Keywords: ANTIMETABOLITES; CHEMISTRY, PHARMACEUTICAL; EXPERIMENTAL LAB STUDY; PHARMACOLOGY; PYRIDINES; PYRIDOXINE; SACCHAROMYCES. Let’s learn more about this compound (cas:148-51-6).

cf. preceding abstract Derivatives of I were prepared by treatment of 2,2,8-trimethyl-4H-m-dioxino[4,5-c]pyridine-5-methanol benzoate with HCl. I (R = OH) refluxed with SOCl2 and the residue treated with EtOH produced I (R = Cl). The catalytic (C) hydrogenation of I (R = Cl) afforded I (R = H). I (R = H) refluxed in KOH gave 4-deoxypyridoxine (II). I (R = Cl) stirred with Na2S2O5 produced I (R = SO3H). KCNS refluxed with I (R = Cl) gave I (R = SCN). Similarly, I (R = Cl) stirred with NaHS gave I (R = SH). I (R = H) was as active and I (R = SO3H) one-half as active as II in depressing lymphocyte count in rats fed a pyridoxine deficient diet, while the other reported derivatives were inactive. None of the other compounds inhibited the growth of Saccharomyces carlsbergensis. Cf. Schmidt, and Giesselmann, CA 58, 1429d.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Some scientific research about 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Product Details of 148-51-6, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(SMILESS: OC1=C(C)C(CO)=CN=C1C.[H]Cl,cas:148-51-6) is researched.Safety of 4-(Pyridin-2-yl)benzoic acid. The article 《Phosphorescence characteristics of several antimetabolites》 in relation to this compound, is published in Talanta. Let’s take a look at the latest research on this compound (cas:148-51-6).

Phosphorescence excitation and emission wavelength peaks, lifetimes, limits of detection, and concentration ranges of anal. usefulness of 37 antimetabolites in rigid (77°K.) ethanolic solution were determined Seventeen of the metabolites produced anal. useful phosphorescence, whereas the remaining 20 were of limited or no anal. use.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Product Details of 148-51-6, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Can You Really Do Chemisty Experiments About 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Preparation of o-dialkylbenzene》. Authors are Ogawa, Masaya; Tanaka, Giichi.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).SDS of cas: 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

1-Butyl-1-cyclohexene (45 g.) was oxidized 2 h. below 45° with 275 g. 80% HCO2H and with 50 g. 30% H2O2, the mixture neutralized and extracted with EtOAc, and the extract distilled to give 26 g. 1-butyl-l,2-cyclohexanediol (I), b2 115-18°. I (10 g.) in 50 cc. EtOH refluxed 30 min. with 0.5 cc. H2SO4, and the mixture distilled gave 4 g. 2-butylcyclohexanone (II), b7 76-8°. II was also prepared (51%) starting with 2-chlorocyclohexanone. II (0.5 mol) and 1 mol RMgX mixed at 0°, refluxed 5-7 h. at 30-5°, and distilled gave the following 1-alkyl-2-butylcyclohexanol (III) (alkyl, b.p./mm., d20, nD20, and % yield given): Bu, 115-17°/3.5, 0.8989, 1.4679, 43.2; octyl, 155-7°/4, 0.8850, 1.4683, 40; dodecyl, 184-5°/1, -, -, 37.4 (m. 46.5-7.5°). III heated 5 h. on oil bath with iodine and the product washed with 1% aqueous Na2S2O3 and distilled gave the following 1-alkyl-2-butyl-l-cyclohexenes (IV) (alkyl, b.p./mm., d20, nD20, and % yield given): Bu, 82-5°/3, 0.8410, 1.4635, 68.5; octyl, 148-51°/6, 0.8407, 1.4654, 85; dodecyl, 161-5°/1, 0.8407, 1.4654, 82.1. The IV were dehydrogenated over Pd-C at 220-80° to give the following 1-alkyl-2-butylbenzene (alkyl, b.p., d20, nD20, and % yield given): Bu, 256-7°, 0.8553, 1.4826, 57; octyl, 305-7°, 0.8570, 1.4827, 69; dodecyl, 358-9°, 0.8579, 1.4820, 46.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A small discovery about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Preparation of 5-hydroxy-4,6-dimethyl-3-pyridinemethanol (4-deoxypyridoxine) by the use of hydrazine》. Authors are Taborsky, Robert G..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Related Products of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

2-Methyl-3-hydroxy-4-methoxymethyl-5-hydroxymethylpyridine-HCl (10 g.) and 50 ml. 95% N2H4 refluxed 18 hrs., most of the N2H4 removed in vacuo, and the residue extracted with 60 ml. refluxing MeOH yielded N2H4.HCl, m. 91-2°. The volume of the filtrate reduced to 20 ml., 15 ml. 11.2% MeOH-HCl added, the precipitate isolated, and 50 ml. Et2O added gave a further precipitate The total yield was 8.1 g. 2-methyl-3-hydroxy-4-methyl-5-hydroxymethylpyridine-HCl (I), m. 273° (decomposition). All conditions and isolation procedures were as above except that instead of the 4-Me ether, 5 g. pyridoxine-HCl and 25 ml. 95% N2H4 were used to give 98% I.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New learning discoveries about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ) is researched.Category: pyrimidines.Chaudhary, Chhabi Lal; Chaudhary, Prakash; Dahal, Sadan; Bae, Dawon; Nam, Tae-gyu; Kim, Jung-Ae; Jeong, Byeong-Seon published the article 《Inhibition of colitis by ring-modified analogues of 6-acetamido-2,4,5-trimethylpyridin-3-ol》 about this compound( cas:148-51-6 ) in Bioorganic Chemistry. Keywords: aminopyridinol analog preparation inflammatory bowel disease SAR; 6-Aminopyridin-3-ol; Adhesion; Angiogenesis; Inflammatory bowel disease; Ring modification; Structure-activity relationship; TNF-α. Let’s learn more about this compound (cas:148-51-6).

6-Aminopyridin-3-ol scaffold has shown an excellent anti-inflammatory bowel disease activity. Various analogs with the scaffold were synthesized in pursuit of the diversity of side chains tethering on the C(6)-position. SAR among the analogs was investigated to understand the effects of the side chains and their linkers on their anti-inflammatory activities. In this study, structural modification moved beyond side chains on the C(6)-position and reached to pyridine ring itself. It expedited to synthesize diverse ring-modified analogs of a representative pyridine-3-ol, 6-acetamido-2,4,5-trimethylpyridin-3-ol. In the evaluation of compounds on their inhibitory actions against TNF-α-induced adhesion of monocytic cells to colonic epithelial cells, an in vitro model mimicking colon inflammation, the effects of compounds I , II, and III were greater than tofacitinib, an orally available anti-colitis drug, and compound dehydroxylated analog II exhibit the greatest activity. In addition, TNF-α-induced angiogenesis, which permits more inflammatory cell migration into inflamed tissues, was significantly blocked by compounds I and II in a concentration-dependent manner. In the comparison of in vivo therapeutic effects of compounds I , II, and III on dextran sulfate sodium (DSS)-induced colitis in mice, compound dehydroxylated analog II was the most potent and efficacious, and compound demethylated analog III was better than compound I which exhibited a similar degree of inhibitory effect to tofacitinib.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Synthetic Route of C8H12ClNO2, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Preparation of 3-hydroxy-5-hydroxymethyl-2,4-dimethylpyridine (4-deoxyadermine)》. Authors are Wibaut, J. P.; Uhlenbroek, J. H.; Kooijman, E. C.; Kettenes, D. K..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Synthetic Route of C8H12ClNO2. Through the article, more information about this compound (cas:148-51-6) is conveyed.

The preparation of 4-deoxyadermine (I) as described earlier (CA 38, 32849) was improved to give a total yield 15%. Ac2CH2 (25 g.) was slowly added to a refluxing solution of 21 g. NCCH2CONH2 in 150 ml. EtOH and 3 ml. piperidine to give 97% 2-hydroxy-3-cyano-4,6-dimethylpyridine (II), m. 294°, which on nitration with HNO3 (d. 1.52) in Ac2O at 45-50° gave a 5-nitro derivative (III) m. 268° in 70% yield. A mixture of 50 g. dry III and 65 g. PCl5 was treated with 30 ml. POCl3 and heated to 130°, to yield 71% 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine, m. 112-13° (EtOH), which was reduced by Pd-C in MeOH and aqueous HCl to give 70-5% 2,4-dimethyl-3-amino 5-aminomethylpyridine di-HCl salt monohydrate (IV), m. 310° (decomposition). The reaction of IV with Ba(NO2)2 and H2SO4 at 0°, and subsequent heating to 90° afforded 45% I, m. 264°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Synthetic Route of C8H12ClNO2, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Why do aromatic interactions matter of compound: 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthetic and natural phellandrene.》. Authors are Kondakow, J.; Schindelmeiser, J..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Related Products of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

[Machine Translation of Descriptors]. Carvomenthene, from carvomenthylchloride represented, became after REYCHLER into tertiary carvomenthol and over with 12 mm and 83.5-84.5° boiling. Chloride, D204; 0.932, into tertiary carvomenthene, C10H18, transferred. Boiling point 174-176°; D204; 0.811; nD = 1.45709, molecular refraction 46.23. Dibromide, under strong cooling in petroleum-ether prepared, Kp11; 130-144°. D204; 1.208, optical-inactively, separates no HBr, however alcoholic KOH supplies a hydrocarbon, from the main quantity with 175-180° with boiling D204; 0.825, nD = 1.46693, the smaller part with 180-185°. D204; 0.828, nD = 1.4673; molecular refraction 45.56. Both optical-inactive fractions color intensively raspberry red in a solution of acetic anhydride by H2SO4 and are undoubtedly different from the output hydrocarbon. Under consideration of the formation of the new hydrocarbon from carvomenthol author writes it from SEMMLER, (Ber. German Chem. Society 36. 1779; C. 1903. II. 116) for the phellandrene determined constitution without being able to prove the identity. Phellandrene from phellandrum aquaticum, boiling point 165-168°, D204; 0.844, nD = 1.47575, [α] D20 = 8° 37′. Molecular refraction a mixture of monochloride and dichloride gives 45.28, which probably contains an optical-inactive isomer, with HCl in glacial acetic acid. Monochloride, C10H17Cl, Kp11; 86°, melting point about 110° in the melted out tube, optically dextrorotatory. Dichloride, C10H18Cl2, Kp16; 122.5-125°, D204, 1.006, nD20 = 1.48516.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

More research is needed about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 3-pyridinols. III. Synthesis of pyridoxine skeletons from 4-methyloxazole》. Authors are Yoshikawa, Toru; Ishikawa, Fumiyoshi; Naito, Takeo.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Pyridoxine dimethyl ether (I) and 4-deoxypyridoxine (II) were synthesized from 4-methyloxazole (III). 3-Cyano-5-hydroxy-6-methylpyridine (IV) was converted via the 4-CN derivative (V) to pyridoxine by the method of Okamoto and Tani (CA 54, 22644d). (MeOCH2CHBr)2 (5.5 g.) refluxed 1 hr. with 1.23 g. KOH in 12 cc. MeOH gave 2.2 g. MeOCH2CBr:CHCH2OMe (VI), b12 75-8°. VI (5.5 g.) and 3.5 g. CuCN heated 7 hrs. at 150° in an autoclave yielded 2.9 g. MeOCH2CH:C(CN)CH2OMe (VII), b8 84-6°. III (0.8 g.), 2.1 g. VII, 0.2 cc. H2O, and 4 cc. AcOH heated 40 hrs. at 95°, and the crude product chromatographed on Al2O3 yielded 2-methyl-4,5-bis(methoxymethyl)-3-pyridinol-HCl (VIII.HCl), m. 143-4° (iso-PrOH); picrate m. 168°. III (0.80 g.), 2.3 g. MeCH:CHCO2Et, 0.18 cc. H2O, and 3 cc. AcOH heated 20 hrs. at 90° in a sealed tube gave 0.2 g. (crude) Et 5-hydroxy-4,6-dimethylnicotinate, m. 146-8° (Me2CO). VIII (80 mg.) in 15 cc. dry tetrahydrofuran treated 72 hrs. at room temperature with 50 mg. LiAlH4 in 15 cc. dry tetrahydrofuran, and the filtered mixture acidified to pH 2 with dilute HCl and evaporated gave II.HCl, m. 255-7° (decomposition) (EtOH). IV (4.0 g.) in 90 cc. AcOH heated 1 hr. at 100° with 6 cc. 30% H2O2, treated twice with addnl. 6 cc. 30% H2O2 each time 1 and 4 hrs. gave 3.3 g. 5hydroxy-6-methylnicotinonitrile 1-oxide (IX), m. 278-80° (decomposition). IX (0.7 g.) and 0.7 g. Et2SO4 heated 2 hrs. at 100-10° gave 0.31 g. 1-ethoxy-2-methyl-3-hydroxy-5-cyanopyridinium ethosulfate, m. 129-30°. IX (0.6 g.) and 0.55 g. Me2SO4 heated 2 hrs. at 100-10°, and the resulting sirup added in 5 cc. H2O dropwise with shaking at 5-7° to 0.65 g. KCN in 8 cc. H2O and kept 1.5 hr. at room temperature gave 0.55 g. V, m. 189-90°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

What unique challenges do researchers face in 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Correlation between protein function and ligand binding profiles. Author is Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert.

The authors report that proteins with the same function bind the same set of small mols. from a standardized chem. library. This observation led to a quantifiable and rapidly adaptable method for protein functional anal. using exptl. derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chem. library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure, or evolutionary information and, therefore, extends the ability to analyze and functionally annotate novel genes.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia