The effect of the change of synthetic route on the product 148-51-6

This literature about this compound(148-51-6)Application of 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《The relation between iodine-131 metabolism, tumor growth, and regression》. Authors are Scott, Kenneth G.; Daniels, Marie B..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Application of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Ability of tumors to alter the normal metabolic pathway of I131 and compounds labeled with it (iodide-trapping syndrome) (I) is characterized by higher than normal retention of I131 by skin, muscle, gastrointestinal tract, and plasma, and a lower than normal thyroid uptake and urinary excretion of I131. I was elicited in rats by isografts and homografts of a transmissible fibrosarcoma, but not by homoiografts (which regressed after 5-7 days of growth). The data suggest that local and systemic I parallels progressive tumor growth and is absent in tumor implants destined to regress.

This literature about this compound(148-51-6)Application of 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A small discovery about 148-51-6

This literature about this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Preparation of o-dialkylbenzene》. Authors are Ogawa, Masaya; Tanaka, Giichi.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

1-Butyl-1-cyclohexene (45 g.) was oxidized 2 h. below 45° with 275 g. 80% HCO2H and with 50 g. 30% H2O2, the mixture neutralized and extracted with EtOAc, and the extract distilled to give 26 g. 1-butyl-l,2-cyclohexanediol (I), b2 115-18°. I (10 g.) in 50 cc. EtOH refluxed 30 min. with 0.5 cc. H2SO4, and the mixture distilled gave 4 g. 2-butylcyclohexanone (II), b7 76-8°. II was also prepared (51%) starting with 2-chlorocyclohexanone. II (0.5 mol) and 1 mol RMgX mixed at 0°, refluxed 5-7 h. at 30-5°, and distilled gave the following 1-alkyl-2-butylcyclohexanol (III) (alkyl, b.p./mm., d20, nD20, and % yield given): Bu, 115-17°/3.5, 0.8989, 1.4679, 43.2; octyl, 155-7°/4, 0.8850, 1.4683, 40; dodecyl, 184-5°/1, -, -, 37.4 (m. 46.5-7.5°). III heated 5 h. on oil bath with iodine and the product washed with 1% aqueous Na2S2O3 and distilled gave the following 1-alkyl-2-butyl-l-cyclohexenes (IV) (alkyl, b.p./mm., d20, nD20, and % yield given): Bu, 82-5°/3, 0.8410, 1.4635, 68.5; octyl, 148-51°/6, 0.8407, 1.4654, 85; dodecyl, 161-5°/1, 0.8407, 1.4654, 82.1. The IV were dehydrogenated over Pd-C at 220-80° to give the following 1-alkyl-2-butylbenzene (alkyl, b.p., d20, nD20, and % yield given): Bu, 256-7°, 0.8553, 1.4826, 57; octyl, 305-7°, 0.8570, 1.4827, 69; dodecyl, 358-9°, 0.8579, 1.4820, 46.

This literature about this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The Best Chemistry compound: 148-51-6

In addition to the literature in the link below, there is a lot of literature about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6, illustrating the importance and wide applicability of this compound(148-51-6).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ) is researched.SDS of cas: 148-51-6.Shtyrlin, N. V.; Vafina, R. M.; Pugachev, M. V.; Khaziev, R. M.; Nikitina, E. V.; Zeldi, M. I.; Iksanova, A. G.; Shtyrlin, Yu. G. published the article 《Synthesis and biological activity of quaternary phosphonium salts based on 3-hydroxypyridine and 4-deoxypyridoxine》 about this compound( cas:148-51-6 ) in Russian Chemical Bulletin. Keywords: hydroxypyridine quaternary phosphonium salt preparation antibacterial antitumor activity; deoxypyridoxine quaternary phosphonium salt preparation antibacterial antitumor activity. Let’s learn more about this compound (cas:148-51-6).

Methods for the synthesis of quaternary phosphonium salts based on 3-hydroxypyridine, e.g., I (HCl salt), and 4-deoxypyridoxine were developed. Some of obtained compounds possess high antibacterial and antitumor activity in vitro.

In addition to the literature in the link below, there is a lot of literature about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)SDS of cas: 148-51-6, illustrating the importance and wide applicability of this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Discovery of 148-51-6

This literature about this compound(148-51-6)HPLC of Formula: 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《The inhibition of growth of sarcoma 180 by combinations of vitamin B6 antagonists and acid hydrazides》. Authors are Brockman, R. Wallace; Thomson, J. Richard; Schabel, Frank M. Jr.; Skipper, Howard E..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).HPLC of Formula: 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Deoxypyridoxine-HCl (I) and deoxypyridoxine phosphate (II) significantly restricted growth of sarcoma 180 in mice on a diet deficient in vitamin B6 (III), but not in mice on a complete diet. Many compounds of the acid hydrazide type also restricted growth of the sarcoma on a diet deficient in III, but none except 1,5-diaminobiuret at high dosage levels affected the tumor in mice on a complete diet. Combinations of II with acid hydrazides were more inhibitory to the tumor in mice on a complete diet than were combinations of I with acid hydrazides. The same combinations given to mice deficient in III resulted in severe restriction of tumor growth. Vitamins of the III group, i.e., pyridoxine-HCl, pyridoxamine-HCl, pyridoxal-HCl, and pyridoxal phosphate (IV), almost completely prevented the tumor-inhibiting effect of the combinations. Spectrophotometric studies demonstrated ability of the representative acid hydrazides to react with IV. The observed ability of acid hydrazides to enhance the inhibition of sarcoma 180 produced by III-deficiency and III-antagonists is attributed to formation of an inactive conjugate between the acid hydrazides and IV.

This literature about this compound(148-51-6)HPLC of Formula: 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Share an extended knowledge of a compound : 148-51-6

This literature about this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Serwa, Remigiusz; Nam, Tae-gyu; Valgimigli, Luca; Culbertson, Sean; Rector, Christopher L.; Jeong, Byeong-Seon; Pratt, Derek A.; Porter, Ned A. published the article 《Preparation and Investigation of Vitamin B6-Derived Aminopyridinol Antioxidants》. Keywords: aminopyridinol preparation antioxidant.They researched the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ).Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:148-51-6) here.

3-Pyridinols bearing amine substitution para to the hydroxylic moiety have previously been shown to inhibit lipid peroxidation more effectively than typical phenolic antioxidants, for example, α-tocopherol. We report here high-yielding, large-scale syntheses of mono- and bicyclic aminopyridinols from pyridoxine hydrochloride (i.e., vitamin B6). This approach provides straightforward, scaleable access to novel, potent, mol. scaffolds whose antioxidant properties have been investigated in homogeneous solutions and in liposomal vesicles. These mol. aggregates mimic cell membranes that are the targets of oxidative damage in vivo.

This literature about this compound(148-51-6)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The Absolute Best Science Experiment for 148-51-6

This literature about this compound(148-51-6)Electric Literature of C8H12ClNO2has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Electric Literature of C8H12ClNO2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Convulsive effects of 4-deoxypyridoxine in photosensitive baboons. Author is Meldrum, B. S..

In baboons (Papio papio) which when exposed to intermittent light stimulation (ILS) showed myoclonus and electroencephalographic signs of epilepsy, deoxypyridoxine-HCl (I) (10-20 mg/kg, i.v.) did not modify the responses, while 15 min-2 hr after 40-60 mg I/kg, the myoclonic responses to ILS were enhanced. Animals normally giving transient myoclonic responses showed rhythmic myoclonus of the eyelids and face continuing for several sec after the end of ILS. In 4 out of 6 baboons after 80-100 mg I/kg this self-sustaining myoclonus developed into a full tonic-clonic seizure at least once 45-180 min after the drug injection. The injection of 105-150 mg I/kg not only enhanced myoclonic responses to ILS but also led to the appearance after 46-67 min of spontaneous seizures. These recurred every 10-15 min, were often only partial, and commonly originated in, and were sometimes confined to, the occipital cortex. An excess of pyridoxine, given i.v. a few minutes before and after the I, blocked both the enhancement of photosensitivity produced by 100 mg I/kg and spontaneous seizures produced by 150 mg/kg. I may produce these convulsive effects by interfering with the formation or action of pyridoxal phosphate.

This literature about this compound(148-51-6)Electric Literature of C8H12ClNO2has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Simple exploration of 148-51-6

This literature about this compound(148-51-6)Application of 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Vitamin B6. II. Reactions and derivatives》. Authors are Harris, Stanton A..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Application of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Vitamin B6-HCl (I) in an equal mixture of C5H5N and Ac2O, allowed to stand overnight and then heated on a steam bath for 20 min., gives vitamin B6 triacetate-HCl [2-methyl-3-acetoxy-4,5-bis(acetoxymethyl)-pyridine-HCl], m. 157°; it is stable in 0.01 N HCl but is slowly hydrolyzed in 0.01 N alkali at 37°. Vitamin B6 dibromide-HBr (II) and 3 equivalents AcOAg in a 22% solution of AcOK in AcOH, heated on the steam bath for 0.5 hrs., give 25% of vitamin B6 diacetate-HCl [2-methyl-3-hydroxy-4,5-bis(acetoxymethyl) pyridine-HCl], m. 160-1°; the aqueous solution gives a good FeCl3 test; it has the same relative stability as the tri-Ac derivative Reduction of II with a PdBaSO4 catalyst in EtOH gives 40% of 2,4,5-trimethyl-3-hydroxypyridine, m. 178°; HCl salt, m. 216°. Catalytic reduction of I with the Adams catalyst gives 2,4-dimethyl-3-hydroxy-5-hydroxymethylpyridine-HCl, m. 267-8°; this is weakly active for the growth and promotion of acid formation by Streptobacterium plantarum, whereas III is inactive. I, exactly neutralized with 1 equivalent of MeONa in MeOH and heated at 125° for 4 hrs., gives a small yield of 2-methyl-3-hydroxy-4-methoxymethyl-5-hydroxymethylpyridine-HCl (III), m. 181°.

This literature about this compound(148-51-6)Application of 148-51-6has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Can You Really Do Chemisty Experiments About 148-51-6

This literature about this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Synthesis and biological activity of quaternary phosphonium salts based on 3-hydroxypyridine and 4-deoxypyridoxine, the main research direction is hydroxypyridine quaternary phosphonium salt preparation antibacterial antitumor activity; deoxypyridoxine quaternary phosphonium salt preparation antibacterial antitumor activity.Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.

Methods for the synthesis of quaternary phosphonium salts based on 3-hydroxypyridine, e.g., I (HCl salt), and 4-deoxypyridoxine were developed. Some of obtained compounds possess high antibacterial and antitumor activity in vitro.

This literature about this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridehas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extended knowledge of 148-51-6

This literature about this compound(148-51-6)Category: pyrimidineshas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Seizures induced by allylglycine, 3-mercaptopropionic acid, and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glutamic acid decarboxylase.Category: pyrimidines.

The title drugs caused seizures in mice (i.p.) and baboons (i.v.) and, at subconvulsant levels, enhanced photo-induced seizures in baboons. Addition of pyridoxal phosphate [54-47-7] to mouse brain homogenate relieved inhibition of L-glutamate 1-carboxylase [9074-87-7] by 4-deoxypyridoxine-HCl [148-51-6] but not by DL-allylglycine [7685-44-1]. 3-Mercaptopropionic acid [107-96-0] was the most powerful competitive inhibitor of the enzyme.

This literature about this compound(148-51-6)Category: pyrimidineshas given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Little discovery in the laboratory: a new route for 148-51-6

This literature about this compound(148-51-6)Computed Properties of C8H12ClNO2has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ) is researched.Computed Properties of C8H12ClNO2.Sanders, L. B.; Cetorelli, J. J.; Winefordner, James D. published the article 《Phosphorescence characteristics of several antimetabolites》 about this compound( cas:148-51-6 ) in Talanta. Keywords: phosphorescence antimetabolites; antimetabolites phosphorescence. Let’s learn more about this compound (cas:148-51-6).

Phosphorescence excitation and emission wavelength peaks, lifetimes, limits of detection, and concentration ranges of anal. usefulness of 37 antimetabolites in rigid (77°K.) ethanolic solution were determined Seventeen of the metabolites produced anal. useful phosphorescence, whereas the remaining 20 were of limited or no anal. use.

This literature about this compound(148-51-6)Computed Properties of C8H12ClNO2has given us a lot of inspiration, and I hope that the research on this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia