Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Safety of 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid.
Bulat, Tugba;Topcu, Ali research published 《 Influences of oxidation-reduction potential on kefir: Microbial counts, organic acids, volatile compounds and sensory properties》, the research content is summarized as follows. The effects of oxidation-reduction (redox) potential (Eh) on microbiol. and sensory characteristics, volatile compounds, and organic acids of kefir produced using wild or com. culture were investigated during 21 d of storage. The Eh of the milk was modified using reducing or oxidizing chem. agents. Eh7 (Eh expresses at pH 7) values of control, reduced and oxidized kefirs produced using the wild kefir culture were -195.5, -206.1 and + 178.3 mV, while control, reduced and oxidized kefirs produced using the com. kefir culture had Eh7 values of -199.6, -208.1 and + 180.7 mV, resp., on 1 d of storage. Generally, the viability of microorganisms in the kefirs was adversely affected by oxidized conditions, but it was species- and strain-dependent. The Eh caused the change of metabolic routes of the microorganisms and, thereby, the change of volatile compounds and organic acids contents of kefir. Principal component anal. (PCA) of the volatile compounds separated the kefirs according to the culture and redox status. Kefirs with low Eh were characterized by the presence of sulfur compounds, whereas kefirs with oxidative Eh were characterized mainly by aldehydes and diacetyl. In addition, reduced Eh caused arising in sensory preference of the kefir samples.
65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., Safety of 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia