Mechanism of decarboxylation of 1,3-dimethylorotic acid. A model for orotidine 5′-phosphate decarboxylase was written by Beak, Peter;Siegel, Brock. And the article was included in Journal of the American Chemical Society in 1976.Recommanded Product: 59864-30-1 This article mentions the following:
The decarboxylation of 1,3-dimethylorotic acid (I) is shown to proceed by sep. pH-determined pathways in sulfolane at 180-220°. Although a process involving ionization of I is the major pathway in the presence of excess base, decarboxylation is initiated by zwitterion formation in the neutral solvent. Measurements of the rate of loss of CO2 from 6-carboxy-2,4-dimethoxypyrimidine and 1-methyl-2,4-dimethoxypyrimidinium-6-carboxylate betaine (II) are used to estimate the equilibrium and rate constants for the zwitterionic pathway. Comparison of the rate constant for decarboxylation of II with kcat for orotidine 5′-phosphate decarboxylase shows that the biol. catalysis can be satisfactorily accounted for if the enzyme provides a site which displaces the equilibrium in favor of the zwitterionic form of orotidylic acid. It is also noted that the inhibitor, 6-azauridine monophosphate, which has a greater affinity for the enzyme than does the substrate, provides a partial model for the intermediate formed on loss of CO2 from the zwitterion. In the experiment, the researchers used many compounds, for example, 2,6-Dimethoxypyrimidine-4-carboxylic acid (cas: 59864-30-1Recommanded Product: 59864-30-1).
2,6-Dimethoxypyrimidine-4-carboxylic acid (cas: 59864-30-1) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Recommanded Product: 59864-30-1
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia