Jaiswal, Bijay S. et al. published their research in Clinical Cancer Research in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

ERK mutations and amplification confer resistance to ERK-inhibitor therapy was written by Jaiswal, Bijay S.;Durinck, Steffen;Stawiski, Eric W.;Yin, Jianping;Wang, Weiru;Lin, Eva;Moffat, John;Martin, Scott E.;Modrusan, Zora;Seshagiri, Somasekar. And the article was included in Clinical Cancer Research in 2018.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Purpose: MAPK pathway inhibitors targeting BRAF and MEK have shown clin. efficacy in patients with RAF- and/or RAS-mutated tumors. However, acquired resistance to these agents has been an impediment to improved long-term survival in the clinic. In such cases, targeting ERK downstream of BRAF/MEK has been proposed as a potential strategy for overcoming acquired resistance. Preclin. studies suggest that ERK inhibitors are effective at inhibiting BRAF/RAS-mutated tumor growth and overcome BRAF or/and MEK inhibitor resistance. However, as observed with other MAPK pathway inhibitors, treatment with ERK inhibitors is likely to cause resistance in the clinic. Here, we aimed to model the mechanism of resistance to ERK inhibitors. Exptl. Design: We tested five structurally different ATP-competitive ERK inhibitors representing three different scaffolds on BRAF/RAS-mutant cancer cell lines of different tissue types to generate resistant lines. We have used in vitro modeling, structural biol., and genomic anal. to understand the development of resistance to ERK inhibitors and the mechanisms leading to it. Results: We have identified mutations in ERK1/2, amplification and overexpression of ERK2, and overexpression of EGFR/ERBB2 as mechanisms of acquired resistance. Structural anal. of ERK showed that specific compounds that induced on-target ERK mutations were impaired in their ability to bind mutant ERK. We show that in addition to MEK inhibitors, ERBB receptor and PI3K/mTOR pathway inhibitors are effective in overcoming ERK-inhibitor resistance. Conclusions: These findings suggest that combination therapy with MEK or ERBB receptor or PI3K/mTOR and ERK inhibitors may be an effective strategy for managing the emergence of resistance in the clinic. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia