Yagita, Ryotaro’s team published research in Tetrahedron Letters in 61 | CAS: 169396-92-3

Tetrahedron Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C3H6BrNaO3S, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Yagita, Ryotaro published the artcileSynthesis and physicochemical properties of 20-mer peptide nucleic acid conjugates with testosterone 17β-carboxylic acid, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Tetrahedron Letters (2020), 61(17), 151781, database is CAplus.

Although peptide nucleic acids (PNAs) have improved nuclease resistance compared with DNA or RNA, it is difficult to synthesize long PNAs because of poor elongation yield. Herein we synthesized 20-mer PNAs (PNA20), targeting Nnmt mRNA, as well as its conjugate with testosterone 17β-carboxylic acid, in high purity and yield. This synthesis was conducted using Oxyma as a condensation agent and NMP as a solvent for Fmoc-PNA-C(Bhoc)-OH. The resistance of PNA20 to exonuclease was higher than that of RNA. Furthermore, the abilities of PNA20 and its conjugate to bind to complementary DNA were stronger than that of DNA or RNA. These findings lay the basis for the synthesis of long PNA derivatives toward oligonucleotide therapeutics.

Tetrahedron Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C3H6BrNaO3S, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Lee, Jinho’s team published research in Bulletin of the Korean Chemical Society in 35 | CAS: 56-05-3

Bulletin of the Korean Chemical Society published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Quality Control of 56-05-3.

Lee, Jinho published the artcile3,5-Bis(aminopyrimidinyl)indole Derivatives: Synthesis and Evaluation of Pim Kinase Inhibitory Activities, Quality Control of 56-05-3, the publication is Bulletin of the Korean Chemical Society (2014), 35(7), 2123-2129, database is CAplus.

A novel series of 3,5-bis(aminopyrimidinyl)indole derivatives I (R = (CH3)2N(CH2)2O, cyclopentyloxy, Me piperazinyl, etc.) were synthesized and evaluated against Pim kinases, meridianin C was chosen as a hit structure and its substituent was modified to discover potent and selective pan-pim kinase inhibitors. Substitution at C-5-position by 2-amino-pyrimidine having hydrophilic aminoalkyl chain improved the potency were described. SAR o f substituents at C-4 position of 2-amino-pyrimidine suggested that aminoalkyl moiety, with the adequate chain length and substituent, could provide compound with the high potency and selectivity. This study suggests the 3,5-bis(aminopyrimidinyl)indole moiety is a very interesting scaffold, which can be further optimized for more potent inhibitors of pim kinases.

Bulletin of the Korean Chemical Society published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Quality Control of 56-05-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Carloni, Laure-Elie’s team published research in European Journal of Organic Chemistry in 2019 | CAS: 169396-92-3

European Journal of Organic Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Carloni, Laure-Elie published the artcileSynthesis of 3,5-Disubstituted Isoxazoles through a 1,3-Dipolar Cycloaddition Reaction between Alkynes and Nitrile Oxides Generated from O-Silylated Hydroxamic Acids, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is European Journal of Organic Chemistry (2019), 2019(44), 7322-7334, database is CAplus.

In this paper, we report the regioselective synthesis of 3,5-disubstituted isoxazoles by 1,3-dipolar cycloaddition between alkynyl dipolarophiles and nitrile oxide dipoles generated in-situ from O-silylated hydroxamic acids in the presence of trifluoromethanesulfonic anhydride and NEt3. Thanks to the mild, metal-free and oxidant-free conditions that this strategy offers, the reaction was successfully applied to a wide variety of alkynyl dipolarophiles, demonstrating the tolerance of this approach to diverse functional groups. In particular, we have shown that the method was compatible with biol. mols. such as peptides and peptide nucleic acids (PNA). This protocol constitutes another example of metal-free 1,3-dipolar cycloaddition leading to the regioselective formation of isoxazoles.

European Journal of Organic Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Recommanded Product: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Avitabile, Concetta’s team published research in Tetrahedron Letters in 51 | CAS: 186046-81-1

Tetrahedron Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Avitabile, Concetta published the artcileDevelopment of an efficient and low-cost protocol for the manual PNA synthesis by Fmoc chemistry, Synthetic Route of 186046-81-1, the publication is Tetrahedron Letters (2010), 51(29), 3716-3718, database is CAplus.

An efficient and low-cost protocol for the manual synthesis of peptide nucleic acids is reported here. The protocol relies on coupling reactions carried out with 2.5 equiv of PNA monomers activated with HOBT/HBTU, in the presence of pyridine/NMM. The protocol has been tested on four PNA oligomers with a length ranging from 9 to 12 bases and a purine content up to 67%.

Tetrahedron Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Avitabile, Concetta’s team published research in Tetrahedron Letters in 51 | CAS: 169396-92-3

Tetrahedron Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Quality Control of 169396-92-3.

Avitabile, Concetta published the artcileDevelopment of an efficient and low-cost protocol for the manual PNA synthesis by Fmoc chemistry, Quality Control of 169396-92-3, the publication is Tetrahedron Letters (2010), 51(29), 3716-3718, database is CAplus.

An efficient and low-cost protocol for the manual synthesis of peptide nucleic acids is reported here. The protocol relies on coupling reactions carried out with 2.5 equiv of PNA monomers activated with HOBT/HBTU, in the presence of pyridine/NMM. The protocol has been tested on four PNA oligomers with a length ranging from 9 to 12 bases and a purine content up to 67%.

Tetrahedron Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Quality Control of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Grant, Jennifer’s team published research in Small in 14 | CAS: 56-05-3

Small published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Product Details of C4H3Cl2N3.

Grant, Jennifer published the artcileAn Immobilized Enzyme Reactor for Spatiotemporal Control over Reaction Products, Product Details of C4H3Cl2N3, the publication is Small (2018), 14(31), n/a, database is CAplus and MEDLINE.

This paper describes a microfluidic chip wherein the position and order of two immobilized enzymes affects the type and quantity of reaction products in the flowing fluid. Assembly of the chip is based on a self-assembled monolayer presenting two orthogonal covalent capture ligands that immobilize their resp. fusion enzyme. A thiol-tagged substrate is flowed over a region presenting the first enzyme – which generates a product that is efficiently transferred to the second enzyme – and the second enzyme’s product binds to an adjacent thiol capture site on the chip. The amount of the three possible reaction products is quantified directly on the chip using self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry, revealing that the same microsystem can be spatiotemporally arranged to produce different products depending on the device design. This work allows for optimizing multistep biochem. transformations in favor of a desired product using a facile reaction and anal. format.

Small published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Product Details of C4H3Cl2N3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Jha, Deepti’s team published research in Bioconjugate Chemistry in 22 | CAS: 186046-81-1

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Formula: C39H35N5O8.

Jha, Deepti published the artcileCyLoP-1: A Novel Cysteine-Rich Cell-Penetrating Peptide for Cytosolic Delivery of Cargoes, Formula: C39H35N5O8, the publication is Bioconjugate Chemistry (2011), 22(3), 319-328, database is CAplus and MEDLINE.

Cell-penetrating peptides (CPPs) may have implications in biomedical sciences by improving the delivery of a wide variety of drugs through the membrane barrier. CPPs are generally taken up by endocytic pathways, and vesicular encapsulation is a limiting factor in the area of intracellular targeting. A novel, cationic cysteine-rich CPP, CyLoP-1, has been developed exhibiting distinguished diffused cytosolic distribution along with endosomal uptake at low micromolar concentrations Comparative uptake anal. with known CPPs showed CyLoP-1 as a promising delivery vector to access the cytosol in a variety of cell types. In addition to the pos. charged residues, the presence of cysteines and tryptophans proved to be essential to maintain its functionality. Also, the oxidation status of the cysteines played an important role for the uptake efficiency of CyLoP-1, with the disulfide-containing form being more effective. The distinct feature of CyLoP-1 to enter the cytosol was further explored by the covalent attachment of cargoes of different nature and sizes. In particular, induction of caspase-3 activity (indicating apoptosis) by a CyLoP-1-SmacN7 conjugate proved successful delivery of the pro-apoptotic cargo to its site of action in the cytosol. Efficient intracellular delivery into the entire cytosol already at low micromolar concentrations makes CyLoP-1 a promising candidate for cytosolic delivery of cargoes of small sizes. Thus, this peptide might prove to be useful for efficient transmembrane delivery of agents directed to cytosolic targets.

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Formula: C39H35N5O8.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Jha, Deepti’s team published research in Bioconjugate Chemistry in 22 | CAS: 169396-92-3

Bioconjugate Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Jha, Deepti published the artcileCyLoP-1: A Novel Cysteine-Rich Cell-Penetrating Peptide for Cytosolic Delivery of Cargoes, Category: pyrimidines, the publication is Bioconjugate Chemistry (2011), 22(3), 319-328, database is CAplus and MEDLINE.

Cell-penetrating peptides (CPPs) may have implications in biomedical sciences by improving the delivery of a wide variety of drugs through the membrane barrier. CPPs are generally taken up by endocytic pathways, and vesicular encapsulation is a limiting factor in the area of intracellular targeting. A novel, cationic cysteine-rich CPP, CyLoP-1, has been developed exhibiting distinguished diffused cytosolic distribution along with endosomal uptake at low micromolar concentrations Comparative uptake anal. with known CPPs showed CyLoP-1 as a promising delivery vector to access the cytosol in a variety of cell types. In addition to the pos. charged residues, the presence of cysteines and tryptophans proved to be essential to maintain its functionality. Also, the oxidation status of the cysteines played an important role for the uptake efficiency of CyLoP-1, with the disulfide-containing form being more effective. The distinct feature of CyLoP-1 to enter the cytosol was further explored by the covalent attachment of cargoes of different nature and sizes. In particular, induction of caspase-3 activity (indicating apoptosis) by a CyLoP-1-SmacN7 conjugate proved successful delivery of the pro-apoptotic cargo to its site of action in the cytosol. Efficient intracellular delivery into the entire cytosol already at low micromolar concentrations makes CyLoP-1 a promising candidate for cytosolic delivery of cargoes of small sizes. Thus, this peptide might prove to be useful for efficient transmembrane delivery of agents directed to cytosolic targets.

Bioconjugate Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Alonso, Mercedes’s team published research in Physical Chemistry Chemical Physics in 13 | CAS: 31401-45-3

Physical Chemistry Chemical Physics published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, COA of Formula: C6H9N3.

Alonso, Mercedes published the artcileChemical applications of neural networks: aromaticity of pyrimidine derivatives, COA of Formula: C6H9N3, the publication is Physical Chemistry Chemical Physics (2011), 13(46), 20564-20574, database is CAplus and MEDLINE.

Neural networks are computational tools able to apprehend nonlinear relations between different parameters, having the capacity to order a large amount of input data and transform them into a graphical pattern of output data. The authors have previously reported their use for the quantification of the aromaticity through the Euclidean distance between neurons. The authors apply the method to a variety of pyrimidine derivatives with electron-donor and electron-withdrawing groups as substituents, with capacity to produce push-pull compounds The authors have calculated the aromaticity of benzene (as a reference mol.), parent pyrimidine and other 11 pyrimidine derivatives having amino, dimethylamino and tricyanovinyl substitution. The neural network was generated using ASE, Λ, NICSzz(1) and HOMA as aromaticity descriptors, since previous work showed that the combination of these indexes provided the best performance of the network. On studying the influence of the substituent on the aromaticity of the mol., opposite to benzene derivatives, all the substituents decrease the aromaticity of the ring. The interplay between aromaticity, planarity and push-pull properties of all the substituted pyrimidines also was addressed. An interesting feature of the neural network to quantify aromaticity is that the importance of the reference reaction used to evaluate energy stabilization and magnetic susceptibility exaltation is minimized.

Physical Chemistry Chemical Physics published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, COA of Formula: C6H9N3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Tardibono, Lawrence P. Jr.’s team published research in Tetrahedron in 67 | CAS: 56-05-3

Tetrahedron published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C3H7NO2, Recommanded Product: 2-Amino-4,6-dichloropyrimidine.

Tardibono, Lawrence P. Jr. published the artcileEnantioselective syntheses of carbocyclic nucleosides 5′-homocarbovir, epi-4′-homocarbovir, and their cyclopropylamine analogs using facially selective Pd-mediated allylations, Recommanded Product: 2-Amino-4,6-dichloropyrimidine, the publication is Tetrahedron (2011), 67(5), 825-829, database is CAplus and MEDLINE.

Carbocyclic nucleosides (-)-5′-homocarbovir and (+)-epi-4′-homocarbovir were prepared from an acylnitroso-derived hetero Diels-Alder cycloadduct. A kinetic enzymic resolution generated an enantiopure aminocyclopentenol and Pd(0)-mediated decarboxylative allylations of allyl 2,2,2-trifluoroethyl malonates were used to install the 4′-hydroxyethyl groups. Late stage derivatization gave access to the cyclopropylamine analogs, (-)-5′-homoabacavir, and (+)-epi-4′-homoabacavir. All carbonucleoside target mols. were evaluated for antiviral activity.

Tetrahedron published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C3H7NO2, Recommanded Product: 2-Amino-4,6-dichloropyrimidine.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia