Sweeny, Larissa et al. published their research in Laryngoscope in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Product Details of 219580-11-7

Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor was written by Sweeny, Larissa;Liu, Zhiyong;Lancaster, William;Hart, Justin;Hartman, Yolanda E.;Rosenthal, Eben L.. And the article was included in Laryngoscope in 2012.Product Details of 219580-11-7 The following contents are mentioned in the article:

Head and neck squamous cell carcinoma (HNSCC) is a complex disease process involving interactions with carcinoma-associated fibroblasts and endothelial cells. We further investigated these relationships by suppressing stromal cell growth through the inhibition of fibroblast growth factor receptor (FGFR). HNSCC cell lines (FADU, OSC19, Cal27, SCC1, SCC5, SCC22A), fibroblast (HS27), and endothelial cells (human umbilical vascular endothelial cell) were cultured individually or in coculture. Proliferation was assessed following treatment with a range of physiol. concentrations of FGFR inhibitor PD173074. Mice bearing established HNSCC xenografts were treated with PD173074 (12 mg/kg), and tumor histol. was analyzed for stromal composition, proliferation (Ki67 staining), and apoptosis (TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling] staining). In vitro, inhibition of FGFR with PD173074 dramatically reduced proliferation of fibroblasts and endothelial cells compared to untreated controls. However, HNSCC cell proliferation was not affected by inhibition of FGFR. When cocultured with fibroblasts, HNSCC cells proliferation increased by 15% to 80% (P < .01). Furthermore, this fibroblast-enhanced tumor cell growth was suppressed by FGFR inhibition. Addnl., treatment of mice bearing HNSCC xenografts with PD173074 resulted in significant growth inhibition (P < .001). Addnl., those tumors from mice treated with PD173074 had a smaller stromal component, decreased proliferation, and increased apoptosis. Targeting the FGFR pathway in head and neck cancer acts through the stromal components to decrease HNSCC growth in vivo and in vitro. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Product Details of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Product Details of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Wang, Nan et al. published their research in Biomedicine & Pharmacotherapy in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 219580-11-7

Fibroblast growth factor 21 improves glucose homeostasis partially via down-regulation of Na+D-glucose cotransporter SGLT1 in the small intestine was written by Wang, Nan;Li, Shuai;Guo, Xiao-chen;Li, Jun-yan;Ren, Gui-ping;Li, De-shan. And the article was included in Biomedicine & Pharmacotherapy in 2019.Recommanded Product: 219580-11-7 The following contents are mentioned in the article:

Fibroblast growth factor-21 (FGF-21), an endocrine hormone, is regarded as a therapeutic target for diabetes base on its potent effects on improving hyperglycemia. Sodium-dependent glucose cotransporter 1 (SGLT1) is mainly expressed in the small intestine (SI) for intestinal glucose absorption. It has been demonstrated that SGLT1 expression is increased in diabetes, which is thought to contribute to the rapidly rising postprandial blood glucose levels. Thus, we aim to examine whether FGF-21 regulates expression of intestinal SGLT1 in diabetes. The db/db mice were treated with insulin, low and high dose of FGF-21 for 5 wk and then measured changes in glucose metabolism, intestinal glucose absorption and SGLT1 expression. The results showed that FGF-21 improved glucose homeostasis, inhibited intestinal glucose uptake and reduced intestinal SGLT1 expression compared with insulin in db/db mice. To further explore the mechanism of effects of FGF-21 on SGLT1 expression. The murine intestinal epithelial MODE-K cells were treated with FGF-21 for 3 h, 6 h, 12 h and 24 h and then measured glucose uptake, SGLT1 expression, another glucose transporter GLUT2 expression and associated mechanism. Our results showed that FGF-21 inhibited glucose uptake and reduced SGLT1 expression in MODE-K cells, which were due to inactivating SGK-1 pathway. Moreover, above effects of FGF-21 on MODE-K cells were abolished by PD173074, a FGFR1 inhibitor. In conclusion, FGF-21 regulates glucose level in diabetes partially due to inhibiting glucose absorption in the SI via inactivating SGK-1 pathway. These results expand our knowledge about how FGF-21 regulates glucose metabolism This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Wylie, Ben et al. published their research in OncoImmunology in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Synthetic Route of C24H27N5O2

Acquired resistance during adoptive cell therapy by transcriptional silencing of immunogenic antigens was written by Wylie, Ben;Chee, Jonathan;Forbes, Catherine A.;Booth, Mitchell;Stone, Shane R.;Buzzai, Anthony;Abad, Ana;Foley, Bree;Cruickshank, Mark N.;Waithman, Jason. And the article was included in OncoImmunology in 2019.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

Immunotherapies such as adoptive cell therapy (ACT) are promising treatments for solid cancers. However, relapsing disease remains a problem and the mol. mechanisms underlying resistance are poorly defined. We postulated that the deregulated epigenetic landscape in cancer cells could underpin the acquisition of resistance to immunotherapy. To address this question, two preclin. models of ACT were employed to study transcriptional and epigenetic regulatory processes within ACT-treated cancer cells. In these models ACT consistently causes robust tumor regression, but resistance develops and tumors relapse. We identified down-regulated expression of immunogenic antigens at the mRNA level correlated with escape from immune control. To determine whether this down-regulation was under epigenetic control, we treated escaped tumor cells with DNA demethylating agents, azacytidine (AZA) and decitabine (DEC). AZA or DEC treatment restored antigen expression in a proportion of the tumor population. To explore the importance of other epigenetic modifications we isolated tumor cells refractory to DNA demethylation and screened clones against a panel of 19 different epigenetic modifying agents (EMAs). The library of EMAs included inhibitors of a range of chromosomal and transcription regulatory protein complexes, however, when tested as single agents none restored further antigen expression. These findings suggest that tumor cells employ multiple epigenetic and genetic mechanisms to evade immune control, and a combinatorial approach employing several EMAs targeting transcription and genome stability may be required to overcome tumor resistance to immunotherapy. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Faiao-Flores, Fernanda et al. published their research in Clinical Cancer Research in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C24H27N5O2

HDAC inhibition enhances the in vivo efficacy of MEK inhibitor therapy in Uveal melanoma was written by Faiao-Flores, Fernanda;Emmons, Michael F.;Durante, Michael A.;Kinose, Fumi;Saha, Biswarup;Fang, Bin;Koomen, John M.;Chellappan, Srikumar P.;Maria-Engler, Silvya Stuchi;Rix, Uwe;Licht, Jonathan D.;Harbour, J. William;Smalley, Keiran S. M.. And the article was included in Clinical Cancer Research in 2019.Formula: C24H27N5O2 The following contents are mentioned in the article:

The clin. use of MEK inhibitors in uveal melanoma is limited by the rapid acquisition of resistance. This study has used multiomics approaches and drug screens to identify the pan-HDAC inhibitor panobinostat as an effective strategy to limit MEK inhibitor resistance. Mass spectrometry-based proteomics and RNA-Seq were used to identify the signaling pathways involved in the escape of uveal melanoma cells from MEK inhibitor therapy. Mechanistic studies were performed to evaluate the escape pathways identified, and the efficacy of the MEK-HDAC inhibitor combination was demonstrated in multiple in vivo models of uveal melanoma. We identified a number of putative escape pathways that were upregulated following MEK inhibition, including the PI3K/AKT pathway, ROR1/2, and IGF-1R signaling. MEK inhibition was also associated with increased GPCR expression, particularly the endothelin B receptor, and this contributed to therapeutic escape through ET-3-mediated YAP signaling. A screen of 289 clin. grade compounds identified HDAC inhibitors as potential candidates that suppressed the adaptive YAP and AKT signaling that followed MEK inhibition. In vivo, the MEK-HDAC inhibitor combination outperformed either agent alone, leading to a long-term decrease of tumor growth in both s.c. and liver metastasis models and the suppression of adaptive PI3K/AKT and YAP signaling. Together, our studies have identified GPCR-mediated YAP activation and RTK-driven AKT signaling as key pathways involved in the escape of uveal melanoma cells from MEK inhibition. We further demonstrate that HDAC inhibition is a promising combination partner for MEK inhibitors in advanced uveal melanoma. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Formula: C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Oskooei, Ali et al. published their research in Scientific Reports in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.HPLC of Formula: 219580-11-7

Network-based Biased Tree Ensembles (NetBiTE) for Drug Sensitivity Prediction and Drug Sensitivity Biomarker Identification in Cancer was written by Oskooei, Ali;Manica, Matteo;Mathis, Roland;Martinez, Maria Rodriguez. And the article was included in Scientific Reports in 2019.HPLC of Formula: 219580-11-7 The following contents are mentioned in the article:

We present the Network-based Biased Tree Ensembles (NetBiTE) method for drug sensitivity prediction and drug sensitivity biomarker identification in cancer using a combination of prior knowledge and gene expression data. Our devised method consists of a biased tree ensemble that is built according to a probabilistic bias weight distribution. The bias weight distribution is obtained from the assignment of high weights to the drug targets and propagating the assigned weights over a protein-protein interaction network such as STRING. The propagation of weights, defines neighborhoods of influence around the drug targets and as such simulates the spread of perturbations within the cell, following drug administration. Using a synthetic dataset, we showcase how application of biased tree ensembles (BiTE) results in significant accuracy gains at a much lower computational cost compared to the unbiased random forests (RF) algorithm. We then apply NetBiTE to the Genomics of Drug Sensitivity in Cancer (GDSC) dataset and demonstrate that NetBiTE outperforms RF in predicting IC50 drug sensitivity, only for drugs that target membrane receptor pathways (MRPs): RTK, EGFR and IGFR signaling pathways. We propose based on the NetBiTE results, that for drugs that inhibit MRPs, the expression of target genes prior to drug administration is a biomarker for IC50 drug sensitivity following drug administration. We further verify and reinforce this proposition through control studies on, PI3K/MTOR signaling pathway inhibitors, a drug category that does not target MRPs, and through assignment of dummy targets to MRP inhibiting drugs and investigating the variation in NetBiTE accuracy. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7HPLC of Formula: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.HPLC of Formula: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ye, Lixia et al. published their research in Experimental Neurology in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Synthetic Route of C28H41N7O3

FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho was written by Ye, Lixia;Wang, Xue;Cai, Chenchen;Zeng, Shanshan;Bai, Junjie;Guo, Kaiming;Fang, Mingchu;Hu, Jian;Liu, Huan;Zhu, Liyun;Liu, Fei;Wang, Dongxue;Hu, Yingying;Pan, Shulin;Li, Xiaokun;Lin, Li;Lin, Zhenlang. And the article was included in Experimental Neurology in 2019.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Perinatal asphyxia often results in neonatal cerebral hypoxia-ischemia (HI), which is associated with high mortality and severe long-term neurol. deficits in newborns. Currently, there are no effective drugs to mitigate the functional impairments post-HI. Previous studies have shown that fibroblast growth factor 21 (FGF21) has a potential neuroprotective effect against brain injury. However, the effect of FGF21 on neonatal HI brain injury is unclear. In the present study, both in vivo and in vitro models were used to assess whether recombinant human FGF21 (rhFGF21) could exert a neuroprotective effect after HI and explore the associated mechanism. The results showed that the rhFGF21 treatment remarkably reduced the infarct volume, ameliorated the body weight and improved the tissue structure after HI in neonatal rats. In addition, the rhFGF21 treatment lengthened the running endurance times in the rotarod test and decreased the mean escape latencies and increased the number of platform crossings in the Morris water maze test at 21 d post-HI insult. In contrast, the FGFR1 inhibitor PD173074 and PI3K inhibitor LY294002 partially reversed these therapeutic effects. In isolated primary cortical neurons, the rhFGF21 treatment protected primary neurons from oxygen-glucose deprivation (OGD) insult by inhibiting neuronal apoptosis and promoting neuronal survival. Both our in vivo and in vitro results reveal that rhFGF21 could inhibit neuronal apoptosis by activating the PI3K/Akt signaling pathway via FGF21/FGFR1/β-klotho complex formation. Therefore, rhFGF21 may be a promising therapeutic agent for promoting functional recovery after HI-induced neonatal brain injury. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lucera, Mark B. et al. published their research in Retrovirology in 2017 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Category: pyrimidines

HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells was written by Lucera, Mark B.;Fleissner, Zach;Tabler, Caroline O.;Schlatzer, Daniela M.;Troyer, Zach;Tilton, John C.. And the article was included in Retrovirology in 2017.Category: pyrimidines The following contents are mentioned in the article:

Background: HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early postentry viral events. To uncover addnl. PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small mol. inhibitors on viral fusion and LTR promoterdriven gene expression. Results: While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators-including RhoA, Cdc42, and Rho-associated kinase signaling pathways-significantly reduced viral infection. Using phosphoproteomics and a biochem. GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. Conclusions: Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Category: pyrimidines).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yamada, Takeshi et al. published their research in Journal of Immunology in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Histone H3K27 demethylase negatively controls the memory formation of antigen-stimulated CD8+ T cells was written by Yamada, Takeshi;Nabe, Shogo;Toriyama, Koji;Suzuki, Junpei;Inoue, Kazuki;Imai, Yuuki;Shiraishi, Atsushi;Takenaka, Katsuto;Yasukawa, Masaki;Yamashita, Masakatsu. And the article was included in Journal of Immunology in 2019.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Although the methylation status of histone H3K27 plays a critical role in CD4+ T cell differentiation and its function, the role of Utx histone H3K27 demethylase in the CD8+ T cell-dependent immune response remains unclear. We therefore generated T cell-specific Utxflox/flox Cd4-Cre Tg (Utx KO) mice to determine the role of Utx in CD8+ T cells. Wild-type (WT) and Utx KO mice were infected with Listeria monocytogenes expressing OVA to analyze the immune response of Ag-specific CD8+ T cells. There was no significant difference in the number of Ag-specific CD8+ T cells upon primary infection between WT and Utx KO mice. However, Utx deficiency resulted in more Ag-specific CD8+ T cells upon secondary infection. Adoptive transfer of Utx KO CD8+ T cells resulted in a larger number of memory cells in the primary response than in WT. We observed a decreased gene expression of effector-associated transcription factors, including Prdm1 encoding Blimp1, in Utx KO CD8+ T cells. We confirmed that the trimethylation level of histone H3K27 in the Prdm1 gene loci in the Utx KO cells was higher than in the WT cells. The treatment of CD8+ T cells with Utx-cofactor α-ketoglutarate hampered the memory formation, whereas Utx inhibitor GSK-J4 enhanced the memory formation in WT CD8+ T cells. These data suggest that Utx neg. controls the memory formation of Ag-stimulated CD8+ T cells by epigenetically regulating the gene expression. Based on these findings, we identified a critical link between Utx and the differentiation of Ag-stimulated CD8+ T cells. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Application In Synthesis of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Tao et al. published their research in Journal of Separation Science in 2015 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Related Products of 219580-11-7

Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was written by Zhang, Tao;Ding, Yuanyuan;An, Hongli;Feng, Liuxin;Wang, Sicen. And the article was included in Journal of Separation Science in 2015.Related Products of 219580-11-7 The following contents are mentioned in the article:

Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatog. combined with HPLC and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as the cell membrane stationary phase. The specificity and reproducibility of the cell membrane chromatog. was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatog. column. The retained fraction was directly eluted into HPLC with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatog. combined with HPLC and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional HPLC method can screen and identify potential anti-tumor ingredients that specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Related Products of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Related Products of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ozyerli-Goknar, Ezgi et al. published their research in Cell Death & Disease in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma was written by Ozyerli-Goknar, Ezgi;Sur-Erdem, Ilknur;Seker, Fidan;Cingoz, Ahmet;Kayabolen, Alisan;Kahya-Yesil, Zeynep;Uyulur, Firat;Gezen, Melike;Tolay, Nazife;Erman, Batu;Gonen, Mehmet;Dunford, James;Oppermann, Udo;Bagci-Onder, Tugba. And the article was included in Cell Death & Disease in 2019.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clin. application of TRAIL therapeutics inefficient. In this study, we undertook a chem. screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone Me transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia