Eisavi, Ronak et al. published their research in Turkish Journal of Chemistry in 2019 | CAS: 35139-67-4

2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Related Products of 35139-67-4

The promoted synthesis of minoxidil by magnetic nanoparticles of cobalt ferrite (CoFe2 O4) as a heterogeneous reusable catalyst was written by Eisavi, Ronak; Ahmadi, Fatemeh; Zeynizadeh, Behzad; Kouhkan, Mehri. And the article was included in Turkish Journal of Chemistry in 2019.Related Products of 35139-67-4 The following contents are mentioned in the article:

Minoxidil (2,4-diamino-6-piperidinopyrimidine 3-oxide) was primarily recognized as a drug for reducing vascular resistance to blood flow. It was later introduced as a more important medicine for topical stimulation of hair growth and baldness reverting as well as treatment of androgenic alopecia through increasing prostaglandin endoperoxide synthesis. In this study, magnetic nanoparticles (MNPs) of spinel ferrites (MFe2 O4, M = Co, Ni, Fe, Cu, and Zn) via solid-state grinding procedure were prepared and then characterized using X-ray diffraction, SEM, transmission electron microscopy, vibrating sample magnetometer, and Fourier transform IR techniques. The prepared nanoferrites were utilized as efficient and green heterogeneous catalysts for N -oxidation of 2,6-diamino-4-chloro-pyrimidine with H2 O2 in refluxing ethanol giving 2,6-diamino-4-chloro-pyrimidine N -oxide as a starting material for the synthesis of 2,4-diamino-6-piperidinopyrimidine 3-oxide (minoxidil). Among the examined nanoferrites, CoFe2 O4 MNPs exhibited prominent catalytic activity giving the product in 95% yield within 60 min. Moreover, the reusability of nano-CoFe2 O4 was examined for 6 consecutive cycles without significant loss of catalytic activity and magnetic property. This study involved multiple reactions and reactants, such as 2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4Related Products of 35139-67-4).

2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Related Products of 35139-67-4

35139-67-4;2,6-Diamino-4-chloropyrimidine-1-oxide;The future of 35139-67-4;New trend of C4H5ClN4O;function of 35139-67-4

Wiegand, Richard et al. published their research in Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences in 2012 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C10H13FN2O5

Simultaneous determination of 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl) uracil (FAU) and 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl) 5-methyluracil (FMAU) in human plasma by liquid chromatography/tandem mass spectrometry was written by Wiegand, Richard; Wu, Jianmei; Shields, Anthony F.; LoRusso, Patricia; Li, Jing. And the article was included in Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences in 2012.Computed Properties of C10H13FN2O5 The following contents are mentioned in the article:

A liquid chromatog. coupled with tandem mass spectrometry (LC-MS/MS) assay was developed and validated for simultaneous determination of 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl) uracil (FAU) and its active metabolite 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl) 5-methyluracil (FMAU) in human blood plasma. FAU and FMAU were extracted from plasma samples using solid-phase extraction with Waters Sep-Pak Vac C18 cartridge. Chromatog. separation was achieved on a Waters Atlantis T3 C18 column with a gradient mobile phase consisting of MeOH and water with 0.45% formic acid (volume/volume) running at a flow rate of 0.2 mL/min. The analytes were monitored by triple quadrupole mass spectrometer under pos. ionization mode. The lower limit of quantitation (LLOQ) was 10 and 2 ng/mL for FAU and FMAU in plasma, resp. Calibration curves were linear over FAU and FMAU plasma concentration range of 10-2000 and 2-1000 ng/mL, resp. The intra-day and inter-day accuracy and precision were within the generally accepted criteria for bioanal. method (<15%). The method was successfully employed to characterize the plasma pharmacokinetics of FAU and FMAU in cancer patients receiving 1-h i.v. infusion of FAU 50 mg/m2. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Computed Properties of C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Meyer, Jan-Philip et al. published their research in Journal of Labelled Compounds and Radiopharmaceuticals in 2014 | CAS: 56632-83-8

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Name: 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

A novel radiochemical approach to 1-(2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl)cytosine (18F-FAC) was written by Meyer, Jan-Philip; Probst, Katrin C.; Trist, Iuni M. L.; McGuigan, Christopher; Westwell, Andrew D.. And the article was included in Journal of Labelled Compounds and Radiopharmaceuticals in 2014.Name: 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one The following contents are mentioned in the article:

18F-FAC (1-(2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl)-cytosine) is an important 2′-fluoro-nucleoside-based positron emission tomog. (PET) tracer that has been used for in vivo prediction of response to the widely used cancer chemotherapy drug gemcitabine. Previously reported synthetic routes to 18F-FAC have relied on early introduction of the 18F radiolabel prior to attachment to protected cytosine base. Considering the 18F radiochem. half-life (110 min) and the tech. challenges of multi-step syntheses on PET radiochem. modular systems, late-stage radiofluorination is preferred for reproducible and reliable radiosynthesis with in vivo applications. Herein, we report the first late-stage radiosynthesis of 18F-FAC. Cytidine derivatives with leaving groups at the 2′-position are particularly prone to undergo anhydro side-product formation upon heating because of their electron d. at the 2-carbonyl pyrimidone oxygen. Our rationally developed fluorination precursor showed an improved reactivity-to-stability ratio at elevated temperatures 18F-FAC was obtained in radiochem. yields of 4.3-5.5% (n = 8, decay-corrected from end of bombardment), with purities ≥98% and specific activities ≥63 GBq/μmol. The synthesis time was 168 min. This study involved multiple reactions and reactants, such as 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8Name: 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one).

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Name: 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

56632-83-8;4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one;The future of 56632-83-8;New trend of C9H12FN3O4;function of 56632-83-8

Lee, Jaeick et al. published their research in Therapeutic Drug Monitoring in 2005 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application of 69256-17-3

Rapid Quantitative Determination of L-FMAU-TP from Human Peripheral-Blood Mononuclear Cells of Hepatitis B Virus-Infected Patients Treated with L-FMAU by Ion-Pairing, Reverse-Phase, Liquid Chromatography/Electrospray Tandem Mass Spectrometry was written by Lee, Jaeick; Yoo, Byung-Chul; Lee, Hyo-Suk; Yoo, Hee-Won; Yoo, Hye-Hyun; Kang, Min Jung; Kim, Dong-Hyun. And the article was included in Therapeutic Drug Monitoring in 2005.Application of 69256-17-3 The following contents are mentioned in the article:

The purpose of this study was to develop an anal. method for the determination of 2′-fluoro-5-methyl-β-l-arabinofuranosyl uracil triphosphate (L-FMAU-TP) in human peripheral blood mononuclear cells (PBMCs), and its application in the determination of cellular levels of L-FMAU-TP in PBMCs isolated from patients treated with 2′-fluoro-5-methyl-β-l-arabinofuranosyl uracil (L-FMAU). An ion-pairing liquid chromatog. (IPC) method, coupled with neg. ion electrospray ionization tandem mass spectrometry (ESI-MS/MS), was developed for the accurate and repeatable detection of L-FMAU-TP, with a limit of detection of 1.6 pmol/106 cells. The calibration curve for L-FMAU-TP was linear over the concentration range 1.6 to 80 pmol/106 cells. The intra- and inter-day precision was lower than 11.2%, and the accuracy was between 97.1 and 106.9%. When applied to the determination of L-FMAU-TP in PBMCs isolated from HBV-infected patients undergoing L-FMAU treatment, the levels reached a steady state concentration 4 wk after daily single oral administration of 20 mg L-FMAU, and these levels were maintained for up to 12 wk, but then decreased 12 wk after drug cessation. The terminal half-life of L-FMAU-TP in PBMCs after drug cessation was estimated to be 15.6 days. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Application of 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application of 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Klein, Richard J. et al. published their research in Journal of Investigative Dermatology in 1984 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.COA of Formula: C10H13FN2O5

Effect of eight antiviral drugs on the reactivation of herpes simplex virus in explant cultures of latently infected mouse trigeminal ganglia was written by Klein, Richard J.; Friedman-Kien, Alvin E.. And the article was included in Journal of Investigative Dermatology in 1984.COA of Formula: C10H13FN2O5 The following contents are mentioned in the article:

The effect of several antiviral drugs on the reactivation of herpes simplex virus type 1 in explant cultures of latently infected mouse trigeminal ganglia was investigated. Phosphonoacetate  [4408-78-0] and phosphonoformate  [4428-95-9] which act directly on the virus-induced DNA polymerase, require a drug concentration of 400 μg/mL for the inhibition of virus reactivation in latently infected ganglia. Arabinosyladenine  [5536-17-4] and arabinosyladenine monophosphate  [29984-33-6], which are phosphorylated to triphosphates by cellular enzymes and inhibit virus synthesis either by blocking the DNA polymerase or by incorporation into viral DNA, require a concentration of only 100 μg/mL for the inhibition of the reactivation process. Drugs that are phosphorylated by the virus-induced thymidine kinase, such as acyclovir  [59277-89-3], arabinosylthymine  [605-23-2], bromovinyldeoxyuridine  [69304-47-8], and three fluorinated pyrimidine nucleosides require the lowest drug concentrations for complete inhibition of virus reactivation in latently infected ganglia explant cultures. These data suggest that the inhibition of virus reactivation is dependent not only on drug concentration, but also on the number of latently infected neurons in the ganglia. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3COA of Formula: C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.COA of Formula: C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Ferreira-Bravo, Irani Alves et al. published their research in Nucleic Acids Research in 2015 | CAS: 56632-83-8

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Related Products of 56632-83-8

Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity was written by Ferreira-Bravo, Irani Alves; Cozens, Christopher; Holliger, Philipp; DeStefano, Jeffrey J.. And the article was included in Nucleic Acids Research in 2015.Related Products of 56632-83-8 The following contents are mentioned in the article:

Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with K D, apparatus values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA and DNA aptamers indicated that FA1 bound at least as well as these aptamers. FA1 contained a 20 nucleotide 5′ DNA sequence followed by a 57 nucleotide region of FANA nucleotides. Removal of the fourteen 5′ DNA nucleotides did not affect binding. FA1’s predicted structure was composed of four stems and four loops. All stem nucleotides could be modified to G-C base pairs (14 total changes) with a small effect on binding. Eliminating or altering most loop sequences reduced or abolished tight binding. Overall, results suggested that the structure and the sequence of FA1 were important for binding. FA1 showed strong inhibition of HIV-1 RT in extension assays while no specific binding to avian myeloblastosis or Moloney murine leukemia RTs was detected. A complete DNA version of FA1 showed low binding to HIV-1 RT, emphasizing the unique properties of FANA in HIV-1 RT binding. This study involved multiple reactions and reactants, such as 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8Related Products of 56632-83-8).

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Related Products of 56632-83-8

56632-83-8;4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one;The future of 56632-83-8;New trend of C9H12FN3O4;function of 56632-83-8

De Clercq, E. et al. published their research in Life Sciences in 1986 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.SDS of cas: 69256-17-3

Mutagenic potential of anti-herpes agents was written by De Clercq, E.; Cassiman, J. J.. And the article was included in Life Sciences in 1986.SDS of cas: 69256-17-3 The following contents are mentioned in the article:

A number of anti-herpes agents which are either licensed for clin. use (acyclovir  [59277-89-3]) or subject of clin. studies (bromovinyldeoxyuridine  [82768-44-3], fluoroiodoaracytidine  [69123-90-6], dihydroxypropoxymethylguanine  [82410-32-0]) or under preclin. investigation (i.e., fluoroiodoarauridine  [69123-98-4]), fluoromethylarauridine  [69256-17-3], dihydroxybutylguanine  [83470-64-8], bromovinyldeoxycytidine  [84412-83-9], bromovinylarauridine  [77181-69-2], and carbocyclic bromovinyldeoxyuridine  [95463-56-2]) were evaluated for their ability to induce sister chromatid exchange (SCE), an indicator of mutagenesis. SCE was scored on metaphasic chromosomes of human lymphocytes which had been exposed to 5-bromo-2-deoxyuridine and varying concentrations of the test compounds The antiviral assays were based on the inhibition of the cytopathogenicity of herpes simplex virus for human diploid fibroblasts. Most compounds, i.e. acyclovir, bromovinyldeoxyuridine, or carbocyclic bromovinyldeoxyuridine, did either not induce SCE or only so at concentrations far above their min. antiviral concentrations However, fluoroiodoaracytidine and dihydroxypropoxymethylguanine affected the SCE rate at a concentration (≥ 4.5 μg/mL) that is readily achievable in blood following i.v. injection. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3SDS of cas: 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.SDS of cas: 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Kong, Xiang Bin et al. published their research in Leukemia Research in 1987 | CAS: 56632-83-8

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Formula: C9H12FN3O4

Cell differentiation effects of 2′-fluoro-1-β-D-arabinofuranosyl pyrimidines in HL-60 cells was written by Kong, Xiang Bin; Andreeff, Michael; Fanucchi, Michael P.; Fox, Jack J.; Watanabe, Kyoichi A.; Vidal, Pedro; Chou, Ting Chao. And the article was included in Leukemia Research in 1987.Formula: C9H12FN3O4 The following contents are mentioned in the article:

A group of 2′-fluoro and 5-substituted arabinosyl pyrimidines and a group of base-substituted pseudoisocytidine analogs were evaluated for their capacity to induce differentiation in the human promyelocytic leukemia cell line, HL-60. These compounds were compared to 1-β-D-arabinofuranosylcytosine nAra-C) by monitoring: (1) inhibition of cell growth; (2) morphol. maturation; (3) nitroblue tetrazolium (NBT) reduction; (4) expression of a myeloid differentiation antigen, Mo1; and (5) inhibition of colony formation. Exposure of logarithmically growing cells for 5 days to Ara-C, 2′-fluoro-Ara-C (FAC), 2′-fluoro-5-methyl-Ara-C (FMAC) and 2′-fluoro-5-ethyl-Ara-C (FEAC) resulted in cell growth inhibition at 50% inhibitory concentrations of 0.007, 0.11, 1.7 and 18 μM and at cytostatic concentrations of 0.1, 0.5, 5.0 and 50 μM, resp. These compounds induced granulocytic and monocytic maturation, reduction of NBT, increased expression of Mo1 antigen and a decrease or loss of both cell proliferation and colony formation in a semisolid medium. There were few, if any, cell differentiation effects for the uracil nucleosides and pseudoisonucleosides tested. Ara-C was the most cytotoxic of the compounds When comparing absolute numbers of differentiated cells, i.e. percent of pos. cells multiplied by the number of viable cells, FAC, FMAC, and FEAC were superior to Ara-C in inducing differentiation of HL-60 cells. This study involved multiple reactions and reactants, such as 4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8Formula: C9H12FN3O4).

4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 56632-83-8) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Formula: C9H12FN3O4

56632-83-8;4-Amino-1-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one;The future of 56632-83-8;New trend of C9H12FN3O4;function of 56632-83-8

Machida, Haruhiko et al. published their research in Microbiology and Immunology in 1991 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Quality Control of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

Different antiviral potencies of BV-araU and related nucleoside analogs against herpes simplex virus type 1 in human cell lines and Vero cells was written by Machida, Haruhiko; Nishitani, Makiko; Suzutani, Tatsuo; Hayashi, Kozaburo. And the article was included in Microbiology and Immunology in 1991.Quality Control of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione The following contents are mentioned in the article:

Antiviral potencies against herpes simplex virus type 1 (HSV-1) of 1-β-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) and 10 other nucleoside analogs in human embryonic lung fibroblast (HEL) cells were compared with those in Vero cells. 5-Halogenovinylarabinosyluracils, highly active in HEL cells, were inactive against all 3 laboratory-stocked strains of HSV-1 but exerted moderate antiviral effects on 3 clin. isolates in Vero cells. The reduction in anti-HSV-1 potencies of other representative nucleoside analogs in Vero cells was much less than those of 5-halogenovinylarabinosyluracils. However, significant antiviral potencies of BV-araU against laboratory strains were observed in other human and monkey fibroblast cells including an immortalized cell line. Significant enhancement of antiviral activity of BV-araU against a laboratory strain and a clin. isolate was demonstrated in Vero cells by the addition of 0.1 μM aminopterin or FUdR, an inhibitor of thymidylate synthesis. The potentiated anti-HSV-1 activity in Vero cells was comparable to the potency in HEL cells without the inhibitor. These results suggested that high activity of thymidylate synthesis and a large thymidylate pool size in Vero cells seem to be related to loss of anti-HSV-1 potency of BV-araU. Original tissue type, species, and the immortality may not be responsible for the reduced antiviral activity of BV-araU in Vero cells. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Quality Control of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Quality Control of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3

Thomas, Richard C. et al. published their research in Journal of Pharmaceutical Sciences in 1975 | CAS: 35139-67-4

2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application In Synthesis of 2,6-Diamino-4-chloropyrimidine-1-oxide

Metabolism of minoxidil, a new hypotensive agent. II. Biotransformation following oral administration to rats, dogs, and monkeys was written by Thomas, Richard C.; Harpootlian, Harry. And the article was included in Journal of Pharmaceutical Sciences in 1975.Application In Synthesis of 2,6-Diamino-4-chloropyrimidine-1-oxide The following contents are mentioned in the article:

The biotransformation of minoxidil (I) [38304-91-5] was studied in the rat, dog, and monkey and compared to reported results in the human. Each species excreted substantially the same metabolites, but in quite different relative amounts The monkey and the human exhibited similar metabolite profiles, whereas the dog and rat were quant. different from each other and from the monkey and human. The major excretory product for the monkey and human was I glucuronide [56828-40-1]. Substantially smaller amounts of unchanged I, 2,4-diamino-6-(4′-hydroxypiperidino)pyrimidine 3-oxide [56828-37-6], and more polar metabolites also were excreted by these 2 species. The major excretory product in the rat was unchanged I. Almost as much (combined) of the 2 acidic metabolites, 2,4-diamino-6-(4′-carboxy-n-butylamino)pyrimidine [56828-38-7] and its 3-oxide [56828-41-2], also were produced. Smaller amounts of the glucuronide of I, 2,4-diamino-6-(4′-hydroxypiperidino)pyrimidine 3-oxide, its 3′-hydroxy isomer [56828-39-8], and 2,4-diamino-6-piperidinopyrimidine [24867-26-3] also were excreted by the rat. The major metabolite of I excreted by the dog was the 4′-hydroxy metabolite. Smaller amounts of unchanged I and polar metabolites and much smaller amounts of the glucuronide of I, the 3′-hydroxy metabolite, and 2,4-diamino-6-piperidinopyrimidine also were excreted by the dog. Evidence was obtained for a 4′-hydroxy metabolite glucuronide in this species. The major circulatory material in dog plasma was the 4′-hydroxy metabolite, whereas it was the glucuronide of I in monkey plasma. This study involved multiple reactions and reactants, such as 2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4Application In Synthesis of 2,6-Diamino-4-chloropyrimidine-1-oxide).

2,6-Diamino-4-chloropyrimidine-1-oxide (cas: 35139-67-4) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application In Synthesis of 2,6-Diamino-4-chloropyrimidine-1-oxide

35139-67-4;2,6-Diamino-4-chloropyrimidine-1-oxide;The future of 35139-67-4;New trend of C4H5ClN4O;function of 35139-67-4