Mondal, Rajarshi team published research in Canadian Journal of Chemistry in 2021 | 1722-12-9

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Product Details of C4H3ClN2.

Mondal, Rajarshi;Ortiz, Robert J.;Braun, Jason D.;Herbert, David E. research published 《 Synthesis, characterization, and coordination chemistry of a phenanthridine-containing N-heterocyclic carbene ligand》, the research content is summarized as follows. An N-heterocyclic carbene ligand precursor bearing a π-extended phenanthridine (3,4-benzoquinoline) unit is presented. The proligand was isolated as the imidazolium salt of chloride (1•HCl), bromide (1•HBr), or hexafluorophosphate (1•HPF6) counterions. These salts can be deprotonated and the carbene installed on silver centers using Ag2O as both a base and a source of metal ion. The resulting Ag(I) complex AgCl (1) can be used in a transmetalation reaction to generate a Pd(II) coordination complex Pd(CH3CN)Cl2 (2). The characterization and photophys. properties of these complexes is presented, along with a demonstration of the utility of (1)Pd(CH3CN)Cl2 in mediating a catalytic C-N cross-coupling reaction for the preparation of the pharmaceutical Piribedil.

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mitter, Michael team published research in Nature Protocols in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Reference of 554-01-8

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Reference of 554-01-8.

Mitter, Michael;Takacs, Zsuzsanna;Koecher, Thomas;Micura, Ronald;Langer, Christoph C. H.;Gerlich, Daniel W. research published 《 Sister chromatid-sensitive Hi-C to map the conformation of replicated genomes》, the research content is summarized as follows. Chromosome conformation capture (Hi-C) techniques map the 3D organization of entire genomes. How sister chromatids fold in replicated chromosomes, however, cannot be determined with conventional Hi-C because of the identical DNA sequences of sister chromatids. Here, we present a protocol for sister chromatid-sensitive Hi-C (scsHi-C) that enables the distinction of DNA contacts within individual sister chromatids (cis sister contacts) from those between sister chromatids (trans sister contacts), thereby allowing investigation of the organization of replicated genomes. scsHi-C is based on live-cell labeling of nascent DNA by the synthetic nucleoside 4-thio-thymidine (4sT), which incorporates into a distinct DNA strand on each sister chromatid because of semi-conservative DNA replication. After purification of genomic DNA and in situ Hi-C library preparation, 4sT is chem. converted into 5-methyl-cytosine in the presence of OsO4/NH4Cl to introduce T-to-C signature point mutations on 4sT-labeled DNA. The Hi-C library is then sequenced, and ligated fragments are assigned to sister chromatids on the basis of strand orientation and the presence of signature mutations. The ensemble of scsHi-C contacts thereby represents genome-wide contact probabilities within and across sister chromatids. scsHi-C can be completed in 2 wk, has been successfully applied in HeLa cells and can potentially be established for any cell type that allows proper cell cycle synchronization and incorporation of sufficient amounts of 4sT. The genome-wide maps of replicated chromosomes detected by scsHi-C enable investigation of the mol. mechanisms shaping sister chromatid topologies and the relevance of sister chromatid conformation in crucial processes like DNA repair, mitotic chromosome formation and potentially other biol. processes.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Reference of 554-01-8

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mills, L. Reginald team published research in Organic & Biomolecular Chemistry in 2022 | 1722-12-9

Synthetic Route of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Synthetic Route of 1722-12-9.

Mills, L. Reginald;Patel, Purvish;Rousseaux, Sophie A. L. research published 《 Decyanation-(hetero)arylation of malononitriles to access α-(hetero)arylnitriles》, the research content is summarized as follows. Quaternary α-(hetero)arylnitriles are desirable biol. relevant products, however the existing methods for their synthesis can be unselective or require the use of undesirable reagents, such as cyanide salts. Herein authors report a one-pot method for transnitrilation-mediated decyanation-metalation of disubstituted malononitriles, followed by treatment with (hetero)aryl electrophiles to access quaternary α-(hetero)arylnitrile products. A number of products were prepared using this method (34 examples, 27-99% yield). This method highlights the usefulness of malononitriles as precursors for alkylnitrile-containing compounds

Synthetic Route of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Meyer, Cole C. team published research in Angewandte Chemie, International Edition in 2022 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Safety of 2-Chloropyrimidine.

Meyer, Cole C.;Dubey, Zachary J.;Krische, Michael J. research published 《 Enantioselective Iridium-Catalyzed Reductive Coupling of Dienes with Oxetanones and N-Acyl-Azetidinones Mediated by 2-Propanol》, the research content is summarized as follows. Cyclometallated iridium-PhanePhos complexes generated in situ from [Ir(cod)Cl]2 and (R)-PhanePhos catalyze 2-propanol-mediated reductive couplings of 2-substituted dienes with oxetanone and N-acyl-azetidinones to form branched homoallylic oxetanols and azetidinols with excellent control of regio- and enantioselectivity without C-C cleavage of the strained ring via enantiotopic π-facial selection of transient allyliridium nucleophiles. This work represents the first systematic study of enantioselective additions to sym. ketones.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mettu, Akhila team published research in Bioorganic & Medicinal Chemistry Letters in 2020 | 109-12-6

SDS of cas: 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. SDS of cas: 109-12-6.

Mettu, Akhila;Talla, Venu;Naikal, Subhashini James Prameela research published 《 Novel anticancer Hsp90 inhibitor disubstituted pyrazolyl 2-aminopyrimidine compound 7t induces cell cycle arrest and apoptosis via mitochondrial pathway in MCF-7 cells》, the research content is summarized as follows. Compound 7t, 4-(4-bromophenyl)-6-(1-(4-chlorophenyl)-3-(4-nitrophenyl)-1H-pyrazol-4-yl) pyrimidin-2-amine, is a proven potent anticancer agent exhibiting Hsp90 inhibition in our previous studies. Herein, we explored the apoptotic potential of compound 7t by Annexin V assay. The mechanism underlining the apoptosis process is elucidated. As a potent Hsp90 inhibitor, compound 7t would induce the mitochondrial stress leading to increased permeability of its membrane, that would subsequently initiate the apoptosis in MCF-7 cells. This was proven by increased J-monomer formation using JC-1 stain. Moreover, due to the impaired mitochondrial function, compound 7t also exaggerated the apoptosis process by ROS generation as proved by DCFDA staining. The morphol. and nuclear changes in MCF-7 cells following apoptosis were identified by AO/EB and DAPI staining techniques. It also induced subG1 phase cell cycle arrest. Thus, compound 7t could serve as potential drug in the treatment regimen of breast cancer.

SDS of cas: 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Merritt, Jeremy M. team published research in Organic Process Research & Development in 2022 | 2927-71-1

Product Details of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Product Details of C4HCl2FN2.

Merritt, Jeremy M.;Borkar, Indrakant;Buser, Jonas Y.;Brewer, Alison Campbell;Campos, Odilon;Fleming, Jeffrey;Hansen, Caoimhe;Humenik, Ashley;Jeffery, Stephen;Kokitkar, Prashant B.;Kolis, Stanley P.;Forst, Mindy B.;Lambertus, Gordon R.;Martinelli, Joseph R.;McCartan, Ciaran;Moursy, Hossam;Murphy, Donal;Murray, Michael M.;O’Donnell, Kevin;O’Sullivan, Rita;Richardson, Gary A.;Xia, Han research published 《 Hydrogen Evolution from Telescoped Miyaura Borylation and Suzuki Couplings Utilizing Diboron Reagents: Process Safety and Hazard Considerations》, the research content is summarized as follows. The hazard assessment of a telescoped Miyaura borylation and Suzuki coupling reaction employing bis(pinacolato)diboron (BisPin), used in the developmental synthesis of an intermediate for abemaciclib, led to the observation of hydrogen being generated. Quant. headspace GC and solution 11B NMR were used to show that the rapid decomposition of the excess BisPin from the borylation under the aqueous basic conditions of the Suzuki reaction was responsible for H2 generation. The moles of H2 observed were found equal to the BisPin excess, which is rationalized by mass balance and a stoichiometric reaction. The possible generation of the stoichiometric levels of H2 should be considered in hazard assessments of this class of reaction. Kinetic and process modeling was used to minimize the risk upon scale-up, and results for com. manufacturing batches are presented, which showed good agreement with the lab scale data. Furthermore, the hydrogen evolution potentials of other common borylating agents including bisboronic acid (BBA) and pinacol borane were demonstrated.

Product Details of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mendonca, Agnes team published research in Cytometry, Part A in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one.

Mendonca, Agnes;Sanchez, Oscar;Zhao, Han;Lin, Li;Min, Alan;Yuan, Chongli research published 《 Development and application of novel BiFC probes for cell sorting based on epigenetic modification》, the research content is summarized as follows. The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimol. fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mendes, Monica team published research in International Journal of Molecular Sciences in 2021 | 4595-59-9

Related Products of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Related Products of 4595-59-9.

Mendes, Monica;Kossoski, Fabris;Lozano, Ana I.;Pereira-Da-Silva, Joao;Rodrigues, Rodrigo;Ameixa, Joao;Jones, Nykola C.;Hoffmann, Soren V.;Da Silva, Filipe Ferreira research published 《 Excited states of bromopyrimidines probed by VUV Photoabsorption Spectroscopy and Theoretical Calculations》, the research content is summarized as follows. We report absolute photoabsorption cross sections for gas-phase 2- and 5-bromopyrimidine in the 3.7-10.8 eV energy range, in a joint theor. and exptl. study. The measurements were carried out using high-resolution vacuum UV synchrotron radiation, with quantum chem. calculations performed through the nuclear ensemble approach in combination with time-dependent d. functional theory, along with addnl. Franck-Condon Herzberg-Teller calculations for the first absorption band (3.7-4.6 eV). The cross sections of both bromopyrimidines are very similar below 7.3 eV, deviating more substantially from each other at higher energies. In the 7.3-9.0 eV range where the maximum cross-section is found, a single and broad band is observed for 5-bromopyrimidine, while more discernible features appear in the case of 2-bromopyrimidine. Several π* ← π transitions account for the most intense bands, while weaker ones are assigned to transitions involving the nitrogen and bromine lone pairs, the antibonding σ*Br orbital, and the lower-lying Rydberg states. A detailed comparison with the available photo-absorption data of bromobenzene is also reported. We have found significant differences regarding the main absorption band, which is more peaked in bromobenzene, becoming broader and shifting to higher energies in both bromopyrimidines. In addition, there is a significant suppression of vibrational structures and of Rydberg states in the pair of isomers, most noticeably for 2-bromopyrimidine.

Related Products of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mekala, Janaki Ramaiah team published research in Chemico-Biological Interactions in 2022 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., COA of Formula: C4H5N3

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. COA of Formula: C4H5N3.

Mekala, Janaki Ramaiah;Ramalingam, Prasanna Srinivasan;Mathavan, Sivagami;Yamajala, Rajesh B. R. D.;Moparthi, Nageswara Rao;Kurappalli, Rohil Kumar;Manyam, Rajasekhar Reddy research published 《 Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation》, the research content is summarized as follows. Glioblastoma multiforme (GBM) is a heterogeneous, aggressive brain cancer characterized by chemo-resistance and cancer stemness. Histone deacetylases (HDACs) are a group of enzymes that regulate chromatin epigenetics which were in turn found to be controlled by microRNAs (miRs). The drug employed in chemotherapy for the treatment of GBM is Temozolomide (TMZ). Unfortunately, many GBM patients exhibit chemo-resistance to this drug. Here we have synthesized various Suberoyl anilide hydroxamic acid (SAHA) analogs with many substitutions at the cap site majority of which not yet studied. These SAHA analogs have exhibited profound cytotoxicity at 2 μM, and 4 μM concentrations in GBM cancer cell line U87MG, and 1 μM, and 2 μM concentrations in breast cancer cell line MCF-7. Surprisingly, these analogs have exhibited cytotoxic effects in chronic lymphoid leukemia cells (Raji) at 64 μM, and 128 μM concentrations due to mutated p53. Among all the synthesized analogs 3-Chloro-SAHA, 3-Chloro-4-fluoro SAHA have exhibited effective cytotoxicity in all cancer cells. These potent analogs inhibited HDAC-8 enzyme activity by 2-folds in U87MG, and MCF-7 cell lines and 7-folds decrease in HDAC-8 activity was observed in Raji cell line. These analogs decreased the expression of HDAC-2, HDAC-3 genes and enhanced the expression of p53 tumor suppressor. Interestingly, these compounds decreased the expression of Rictor, the main component of the mTORC2 complex involved cancer cell metabolism Furthermore, these mols. have decreased oncogenic microRNA expression such as miR-21 and enhanced the expression of tumor suppressor microRNAs such as miR-143. The HDAC binding ability of these mols. was highly significant and have exhibited the ability to cross blood-brain barrier (BBB), and followed the Lipinski rule of five. Thus, these mols. need to be taken up further to clinics for better therapy against GBM either singly or combination therapy.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., COA of Formula: C4H5N3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Meitinger, Nicolas team published research in Organic Materials in 2021 | 4595-59-9

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Application of C4H3BrN2.

Meitinger, Nicolas;Mengele, Alexander K.;Nauroozi, Djawed;Rau, Sven research published 《 Pyrimidine-Substituted Hexaarylbenzenes as Versatile Building Blocks for N-Doped Organic Materials》, the research content is summarized as follows. In this work the synthesis of several bis-pyrimidine substituted hexaarylbenzenes (HABs) such as I [R1 = H, t-Bu; R2 = H, t-Bu] furnished with tert-Bu groups at different sites of the four pendant Ph rings was reported. The synthetic procedure was based on modular [4 + 2]-Diels-Alder cycloaddition reactions followed by decarbonylation. Anal. of the solid-state structures revealed that the newly synthesized HABs feature a propeller-like arrangement of the six arylic substituents around the benzene core. Here, the tilt of the aryl rings with respect to the central ring strongly depends on the intermol. interactions between the HABs and co-crystallized solvent mols. Interestingly, by evading the closest proximity of the central ring using an alkyne spacer, the distant pyrimidine ring wais oriented in the coplanar geometry with regard to the benzene core, giving rise to a completely different UV-absorption profile.

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia