Song, Yan-Ling team published research in Journal of Organic Chemistry in 2021 | 109-12-6

Application In Synthesis of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Application In Synthesis of 109-12-6.

Song, Yan-Ling;Li, Bei;Xie, Zhen-Biao;Wang, Dan;Sun, Hong-Mei research published 《 Iron-Catalyzed Oxidative Amination of Benzylic C(sp3)-H Bonds with Anilines》, the research content is summarized as follows. Iron-catalyzed oxidative amination of benzylic C(sp3)-H bonds with anilines bearing electron-withdrawing groups (EWGs) or electron-donating groups (EDGs) has been realized based on simple variations of N-substituents on imidazolium cations in novel ionic Fe(III) complexes. The structural modification of the imidazolium cation resulted in regulation of the redox potential and the catalytic performance of the iron metal center. Using DTBP as oxidant, [HItBu][FeBr4] (1,3-di-tert-butylimidazolium iron tetrabromide) showed the highest catalytic activity for anilines bearing EWGs, while [HIPym][FeBr4] (1,3-bis(pyrimidin-2-yl)imidazolium iron tetrabromide) was more efficient for EDG-substituted anilines. This work provides an alternative access to benzylamines, e.g., RN(R1)CH2Ph [R = 4-O2NC6H4, 2-pyrimidinyl, 8-isoquinolinyl, etc., R1 = H, Me,], with advantages of both a wide substrate scope and iron catalysis.

Application In Synthesis of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Runzhe team published research in Bioorganic Chemistry in 2020 | 1722-12-9

Recommanded Product: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Recommanded Product: 2-Chloropyrimidine.

Song, Runzhe;Wang, Yue;Wang, Minghui;Gao, Ruixuan;Yang, Teng;Yang, Song;Yang, Cai-Guang;Jin, Yongsheng;Zou, Siyuan;Cai, Jianfeng;Fan, Renhua;He, Qiuqin research published 《 Design and synthesis of novel desfluoroquinolone-aminopyrimidine hybrids as potent anti-MRSA agents with low hERG activity》, the research content is summarized as follows. The desfluoroquinolone-based hybrids with involvement of C-7 aminopyrimidine functional group were designed and synthesized. The biol. results showed majority of these hybrids still demonstrated potent anti-MRSA activity with MIC values between 0.38 and 1.5μg/mL, despite the lack of the typical C-6 fluorine atom. Particularly, the most active 1-cyclopropyl-7-((4-(3,4-dimethylphenoxy)pyrimidin-2-yl) amino)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid exhibited activities at submicromolar concentrations against a panel of MRSA strains including vancomycin-intermediate strains, levofloxacin-resistant isolates, and linezolid-resistant isolates, etc. As expected, it also displayed highly selective toxicity toward bacterial cells and low hERG inhibition. Further resistance development study indicated MRSA is unlikely acquired resistance against 1-cyclopropyl-7-((4-(3,4-dimethylphenoxy)pyrimidin-2-yl)amino)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. The docking study revealed that two hydrogen bonds were formed between the C-7 substituent and the surrounding DNA bases, which contributed to resistance by reducing the dependence on the magnesium-water bridge interactions with topoisomerase IV. These indicated a promising strategy for developing new antibiotic quinolones to combat multidrug resistance and cardiotoxicity was resulted.

Recommanded Product: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Runzhe team published research in Bioorganic Chemistry in 2020 | 109-12-6

Electric Literature of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Electric Literature of 109-12-6.

Song, Runzhe;Wang, Yue;Wang, Minghui;Gao, Ruixuan;Yang, Teng;Yang, Song;Yang, Cai-Guang;Jin, Yongsheng;Zou, Siyuan;Cai, Jianfeng;Fan, Renhua;He, Qiuqin research published 《 Design and synthesis of novel desfluoroquinolone-aminopyrimidine hybrids as potent anti-MRSA agents with low hERG activity》, the research content is summarized as follows. The desfluoroquinolone-based hybrids with involvement of C-7 aminopyrimidine functional group were designed and synthesized. The biol. results showed majority of these hybrids still demonstrated potent anti-MRSA activity with MIC values between 0.38 and 1.5μg/mL, despite the lack of the typical C-6 fluorine atom. Particularly, the most active 1-cyclopropyl-7-((4-(3,4-dimethylphenoxy)pyrimidin-2-yl) amino)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid exhibited activities at submicromolar concentrations against a panel of MRSA strains including vancomycin-intermediate strains, levofloxacin-resistant isolates, and linezolid-resistant isolates, etc. As expected, it also displayed highly selective toxicity toward bacterial cells and low hERG inhibition. Further resistance development study indicated MRSA is unlikely acquired resistance against 1-cyclopropyl-7-((4-(3,4-dimethylphenoxy)pyrimidin-2-yl)amino)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. The docking study revealed that two hydrogen bonds were formed between the C-7 substituent and the surrounding DNA bases, which contributed to resistance by reducing the dependence on the magnesium-water bridge interactions with topoisomerase IV. These indicated a promising strategy for developing new antibiotic quinolones to combat multidrug resistance and cardiotoxicity was resulted.

Electric Literature of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Geyang team published research in Journal of Organic Chemistry in 2022 | 4595-59-9

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Recommanded Product: 5-Bromopyrimidine.

Song, Geyang;Nong, Ding-Zhan;Li, Jing-Sheng;Li, Gang;Zhang, Wei;Cao, Rui;Wang, Chao;Xiao, Jianliang;Xue, Dong research published 《 General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis》, the research content is summarized as follows. It was reported that Ni(II)-bipyridine complex catalyzed efficient C-N coupling of aryl chlorides and bromides with various primary and secondary alkyl amines under direct excitation with light. Intramol. C-N coupling was also demonstrated. The feasibility and applicability of the protocol in organic synthesis was attested by more than 200 examples.

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Geyang team published research in Angewandte Chemie, International Edition in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Application In Synthesis of 4595-59-9.

Song, Geyang;Yang, Liu;Li, Jing-Sheng;Tang, Wei-Jun;Zhang, Wei;Cao, Rui;Wang, Chao;Xiao, Jianliang;Xue, Dong research published 《 Chiral Arylated Amines via C-N Coupling of Chiral Amines with Aryl Bromides Promoted by Light》, the research content is summarized as follows. A method based on mol. Ni catalysis driven by light, which enabled stereoretentive C-N coupling of optically active amines, amino alcs. and amino acid esters with aryl bromides, with no need for any external photosensitizer was reported. The method was effective for a wide variety of coupling partners, including those bearing functional groups sensitive to bases and nucleophiles, thus providing a viable alternative to accessing synthetically important chiral N-aryl amines, amino alcs. and amino acids esters. Its viability was demonstrated by 92 examples with up to 99% ee.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Di team published research in European Journal of Medicinal Chemistry in 2021 | 109-12-6

HPLC of Formula: 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. HPLC of Formula: 109-12-6.

Song, Di;Zhang, Nan;Zhang, Panpan;Zhang, Na;Chen, Weijin;Zhang, Long;Guo, Ting;Gu, Xiaotong;Ma, Shutao research published 《 Design, synthesis and evaluation of novel 9-arylalkyl-10-methylacridinium derivatives as highly potent FtsZ-targeting antibacterial agents》, the research content is summarized as follows. With the increasing incidence of antibiotic resistance, new antibacterial agents having novel mechanisms of action hence are in an urgent need to combat infectious diseases caused by multidrug-resistant (MDR) pathogens. Four novel series of substituted 9-arylalkyl-10-methylacridinium derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activities against various Gram-pos. and Gram-neg. bacteria. The results demonstrated that they exhibited broad-spectrum activities with substantial efficacy against MRSA and VRE, which were superior or comparable to the berberine, sanguinarine, linezolid, ciprofloxacin and vancomycin. In particular, the most promising compound I showed rapid bactericidal properties, which avoid the emergence of drug resistance. However, I showed no inhibitory effect on Gram-neg. bacteria but biofilm formation study gave possible answers. Further target identification and mechanistic studies revealed that I functioned as an effective FtsZ inhibitor to alter the dynamics of FtsZ self-polymerization, which resulted in termination of the cell division and caused cell death. Further cytotoxicity and animal studies demonstrated that I not only displayed efficacy in a murine model of bacteremia in vivo, but also no significant hemolysis to mammalian cells. Overall, this compound with novel skeleton could serve as an antibacterial lead of FtsZ inhibitor for further evaluation of drug-likeness.

HPLC of Formula: 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, A-Xiang team published research in Organometallics in 2020 | 4595-59-9

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Formula: C4H3BrN2.

Song, A-Xiang;Zeng, Xiao-Xiao;Ma, Bei-Bei;Xu, Chang;Liu, Feng-Shou research published 《 Direct (Hetero)arylation of Heteroarenes Catalyzed by Unsymmetrical Pd-PEPPSI-NHC Complexes under Mild Conditions》, the research content is summarized as follows. With the aim of developing a facile and efficient method to access structurally intriguing and valuable functionalized (hetero)aryls, two unsym. Pd-PEPPSI-type NHC complexes (PEPPSI, pyridine-enhanced precatalyst preparation, stabilization, and initiation; NHC, N-heterocyclic carbene) were designed and synthesized to catalyze the direct arylation of heteroarenes with (hetero)aryl bromides. The use of this unsym. strategy led to much higher efficiency in comparison to the commonly used C2-sym. Pd-PEPPSI-type NHC complexes. Also, a broad range of heteroaromatics and (hetero)aryl bromide partners with a wide variety of functional groups were all amenable to the developed protocol even at ≥0.05 mol % catalyst loading and under aerobic conditions. More importantly, along with the authors’ study, also the present protocol could provide expedient access to the gram-scale synthesis of the muscle relaxant drug dantrolene and conjugated mesopolymers.

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Anran team published research in Bioorganic & Medicinal Chemistry in 2017 | 2927-71-1

HPLC of Formula: 2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. HPLC of Formula: 2927-71-1.

Song, Anran;Zhang, Jianbin;Ge, Yang;Wang, Changyuan;Meng, Qiang;Tang, Zeyao;Peng, Jinyong;Liu, Kexin;Li, Yanxia;Ma, Xiaodong research published 《 C-2 (E)-4-(Styryl)aniline substituted diphenylpyrimidine derivatives (Sty-DPPYs) as specific kinase inhibitors targeting clinical resistance related EGFRT790M mutant》, the research content is summarized as follows. With the aim to overcome the drug resistance induced by the EGFR T790M mutation (EGFRT790M), herein, a family of diphenylpyrimidine derivatives (Sty-DPPYs) bearing a C-2 (E)-4-(styryl)aniline functionality were designed and synthesized as potential EGFRT790M inhibitors. Among them, the compound 10e (N-[3-[[5-fluoro-2-[(E)-4-(3,5-dimethylstyryl)phenylamino]-4-pyrimidinyl]amino]phenyl]-2-acrylamide) displayed strong potency against the EGFRT790M enzyme, with the IC50 of 11.0 nM. Compound 10e also showed a higher SI value (SI = 49.0) than rociletinib (SI = 21.4), indicating its less side effect. In addition, compound 10e could effectively inhibit the proliferation of H1975 cells harboring the EGFRT790M mutation, within the concentration of 2.91 μM. Significantly, compound 10e has low toxicity against the normal HBE cell (IC50 = 22.48 μM). This work provided new insights into the discovery of potent and selective inhibitor against EGFRT790M over wild-type (EGFRWT).

HPLC of Formula: 2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Solmonson, Ashley team published research in Nature (London, United Kingdom) in 2022 | 65-86-1

65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., SDS of cas: 65-86-1

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. SDS of cas: 65-86-1.

Solmonson, Ashley;Faubert, Brandon;Gu, Wen;Rao, Aparna;Cowdin, Mitzy A.;Menendez-Montes, Ivan;Kelekar, Sherwin;Rogers, Thomas J.;Pan, Chunxiao;Guevara, Gerardo;Tarangelo, Amy;Zacharias, Lauren G.;Martin-Sandoval, Misty S.;Do, Duyen;Pachnis, Panayotis;Dumesnil, Dennis;Mathews, Thomas P.;Tasdogan, Alpaslan;Pham, An;Cai, Ling;Zhao, Zhiyu;Ni, Min;Cleaver, Ondine;Sadek, Hesham A.;Morrison, Sean J.;DeBerardinis, Ralph J. research published 《 Compartmentalized metabolism supports midgestation mammalian development》, the research content is summarized as follows. Mammalian embryogenesis requires rapid growth and proper metabolic regulation. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programs in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucoses contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programs are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analyzed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programs in developing organs in utero.

65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., SDS of cas: 65-86-1

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Slavchev, Ivaylo team published research in RSC Advances in 2022 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Name: Pyrimidin-2-amine

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Name: Pyrimidin-2-amine.

Slavchev, Ivaylo;Ward, Jas. S.;Rissanen, Kari;Dobrikov, Georgi M.;Simeonov, Svilen research published 《 Base-promoted direct amidation of esters: beyond the current scope and practical applications》, the research content is summarized as follows. The base-promoted direct amidation of unactivated esters is among the most useful reactions for amide bond formation in contemporary organic chem. The intensive research in this area has led to the development of a number of new methods to achive this transformation. However, to date, the existing literature is more methodol. and in many instances lacks practical directions. Therefore, the full potential of this transformation is yet to be revealed by broadening the substrate scope. In a search for new practical applications of the amidation reaction, herein a comprehensive study of a number of base-promoted direct amidations that encompass a wide range of amines and esters is presented. Furthermore, authors applied their findings in the synthesis of phosphoramidates and several industrially relevant products.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Name: Pyrimidin-2-amine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia