Trowse, Benjamin R. team published research in ACS Sustainable Chemistry & Engineering in 2021 | 4595-59-9

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H3BrN2.

Trowse, Benjamin R.;Byrne, Fergal P.;Sherwood, James;O’Brien, Peter;Murray, Jane;Farmer, Thomas J. research published 《 Study on 2,2,5,5-Tetramethyloxolane (TMO) as a Solvent for Buchwald-Hartwig Aminations》, the research content is summarized as follows. Herein, the successful application of 2,2,5,5-tetramethyloxolane (TMO), a solvent with a similar property profile to toluene, for Buchwald-Hartwig amination reactions for coupling a wide range of primary and secondary amines with aryl bromides was demonstrated. When NaOt-Bu was used as the base, similar yields were obtained in toluene and TMO. In contrast, using Cs2CO3, TMO outperformed toluene significantly for electron-deficient aryl bromides that could be susceptible to nucleophilic attack. To showcase the use of TMO as a solvent for Buchwald-Hartwig aminations, the synthesis of a key intermediate in the route to smoothened (SMO) receptor antagonist drug candidate SEN826 was successfully accomplished in TMO. Improved metrics and reduction in residual palladium in the isolated amines demonstrate further benefits in the substitution of toluene with TMO in Buchwald-Hartwig aminations.

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Trowse, Benjamin R. team published research in ACS Sustainable Chemistry & Engineering in 2021 | 109-12-6

Computed Properties of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Computed Properties of 109-12-6.

Trowse, Benjamin R.;Byrne, Fergal P.;Sherwood, James;O’Brien, Peter;Murray, Jane;Farmer, Thomas J. research published 《 Study on 2,2,5,5-Tetramethyloxolane (TMO) as a Solvent for Buchwald-Hartwig Aminations》, the research content is summarized as follows. Herein, the successful application of 2,2,5,5-tetramethyloxolane (TMO), a solvent with a similar property profile to toluene, for Buchwald-Hartwig amination reactions for coupling a wide range of primary and secondary amines with aryl bromides was demonstrated. When NaOt-Bu was used as the base, similar yields were obtained in toluene and TMO. In contrast, using Cs2CO3, TMO outperformed toluene significantly for electron-deficient aryl bromides that could be susceptible to nucleophilic attack. To showcase the use of TMO as a solvent for Buchwald-Hartwig aminations, the synthesis of a key intermediate in the route to smoothened (SMO) receptor antagonist drug candidate SEN826 was successfully accomplished in TMO. Improved metrics and reduction in residual palladium in the isolated amines demonstrate further benefits in the substitution of toluene with TMO in Buchwald-Hartwig aminations.

Computed Properties of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Trapp, Oliver team published research in Chemistry – A European Journal in 2020 | 4595-59-9

SDS of cas: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). SDS of cas: 4595-59-9.

Trapp, Oliver;Lamour, Saskia;Maier, Frank;Siegle, Alexander F.;Zawatzky, Kerstin;Straub, Bernd F. research published 《 In Situ Mass Spectrometric and Kinetic Investigations of Soai’s Asymmetric Autocatalysis》, the research content is summarized as follows. Chem. reactions that lead to a spontaneous symmetry breaking or amplification of the enantiomeric excess are of fundamental interest in explaining the formation of a homochiral world. An outstanding example is Soai’s asym. autocatalysis, in which small enantiomeric excesses of the added product alc. are amplified in the reaction of diisopropylzinc and pyrimidine-5-carbaldehydes. The exact mechanism is still in dispute due to complex reaction equilibrium and elusive intermediates. In situ high-resolution mass spectrometric measurements, detailed kinetic analyses and doping with in situ reacting reaction mixtures show the transient formation of hemiacetal complexes, which can establish an autocatalytic cycle. We propose a mechanism that explains the autocatalytic amplification involving these hemiacetal complexes. Comprehensive kinetic experiments and modeling of the hemiacetal formation and the Soai reaction allow the precise prediction of the reaction progress, the enantiomeric excess as well as the enantiomeric excess dependent time shift in the induction period. Exptl. structural data give insights into the privileged properties of the pyrimidyl units and the formation of diastereomeric structures leading to an efficient amplification of even minimal enantiomeric excesses, resp.

SDS of cas: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tran, Van T. team published research in Angewandte Chemie, International Edition in 2020 | 4595-59-9

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Electric Literature of 4595-59-9.

Tran, Van T.;Li, Zi-Qi;Apolinar, Omar;Derosa, Joseph;Joannou, Matthew V.;Wisniewski, Steven R.;Eastgate, Martin D.;Engle, Keary M. research published 《 Ni(COD)(DQ): An Air-Stable 18-Electron Nickel(0)-Olefin Precatalyst》, the research content is summarized as follows. We report that Ni(COD)(DQ) (COD = 1,5-cyclooctadiene, DQ = duroquinone), an air-stable 18-electron complex originally described by Schrauzer in 1962, is a competent precatalyst for a variety of nickel-catalyzed synthetic methods from the literature. Due to its apparent stability, use of Ni(COD)(DQ) as a precatalyst allows reactions to be conveniently performed without use of an inert-atm. glovebox, as demonstrated across several case studies.

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tran, Ryan Q. team published research in RSC Advances in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Application In Synthesis of 4595-59-9.

Tran, Ryan Q.;Dinh, Long P.;Jacoby, Seth A.;Harris, Nekoda W.;Swann, William A.;Williamson, Savannah N.;Semsey, Rebecca Y.;Yet, Larry research published 《 Synthesis of 3-aryl-1-phosphinoimidazo[1,5-a]pyridine ligands for use in Suzuki-Miyaura cross-coupling reactions》, the research content is summarized as follows. 3-Aryl-1-phosphinoimidazo[1,5-a]pyridine ligands I [R = Cy, Ph; Ar = Ph, 2-MeOC6H4, 2,6-(OMe)2C6H3, etc.] were synthesized from 2-aminomethylpyridine as the initial substrate via two complementary routes. The first synthetic pathway underwent the coupling of 2-aminomethylpyridine with substituted benzoyl chlorides, followed by cyclization, iodination and palladium-catalyzed cross-coupling phosphination reactions sequence to give phosphorus ligands I. In the second route, 2-aminomethylpyridine was cyclized with aryl aldehydes, followed by the iodination and palladium-catalyzed cross-coupling phosphination reactions to yield phosphorus ligands I. Ligands I were evaluated in synthesis of sterically-hindered biaryls and heterobiaryls R1-R2 [R = 2-H2N6H4, 4-NC6H4, 3-pyridyl, etc.; R1 = 2-MeO6H4, 3-thienyl, 3-pyridyl, etc.] via palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of hetero(aryl) halides with hetero(aryl)boronic acids.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Townsend, Katherine team published research in Journal of Organic Chemistry in 2021 | 4595-59-9

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Electric Literature of 4595-59-9.

Townsend, Katherine;Huestis, Malcolm P.;Tellis, John C. research published 《 Photoredox/Nickel Dual Catalytic Cross-Coupling of Potassium Thiomethyltrifluoroborates with Aryl and Heteroaryl Bromides》, the research content is summarized as follows. The cross-coupling of S-aryl and S-alkyl potassium thiomethyltrifluoroborates with aryl and heteroaryl bromides is reported via photoredox/nickel dual catalysis. The transformation is achieved under mild conditions with com. available or readily prepared, air stable reagents and affords benzylthioether products in moderate to good yields with good functional group tolerance. A practical and improved synthesis of potassium thiomethyltrifluoroborates is also reported that affords access to previously undescribed reagents.

Electric Literature of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Townley, Chloe team published research in Bioorganic & Medicinal Chemistry Letters in 2022 | 1722-12-9

Name: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Name: 2-Chloropyrimidine.

Townley, Chloe;McMurray, Lindsay;Marsden, Stephen P.;Nelson, Adam research published 《 A unified “top-down” approach for the synthesis of diverse lead-like molecular scaffolds》, the research content is summarized as follows. A “top-down” synthetic approach enabled the step-efficient synthesis of 21 diverse novel mol. scaffolds. The scaffolds were derived from four complex intermediates that had been prepared using cycloaddition chem. Scaffold-hopping of these intermediates was achieved through attachment of an addnl. ring, ring cleavage, ring expansion and/or ring fusion. It was shown that the resulting scaffolds could be decorated to yield diverse lead-like screening compounds

Name: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Toquet, Segolene team published research in Journal of Inherited Metabolic Disease in 2021 | 65-86-1

Synthetic Route of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Synthetic Route of 65-86-1.

Toquet, Segolene;Spodenkiewicz, Marta;Douillard, Claire;Maillot, Francois;Arnoux, Jean-Baptiste;Damaj, Lena;Odent, Sylvie;Moreau, Caroline;Redonnet-Vernhet, Isabelle;Mesli, Samir;Servais, Aude;Noel, Esther;Charriere, Sybill;Rigalleau, Vincent;Lavigne, Christian;Kaphan, Elsa;Roubertie, Agathe;Besson, Gerard;Bigot, Adrien;Servettaz, Amelie;Mochel, Fanny;Garnotel, Roselyne research published 《 Adult- onset diagnosis of urea cycle disorders: Results of a French cohort of 71 patients》, the research content is summarized as follows. Urea cycle disorders (UCD) are rare diseases that usually affect neonates or young children. During decompensations, hyperammonemia is neurotoxic, leading to severe symptoms and even coma and death if not treated rapidly. The aim was to describe a cohort of patients with adult onset of UCDs in a multicentric, retrospective and descriptive study of French adult patients with a diagnosis after 16 years of age of UCDs due to a deficiency in one of the 6 enzymes (arginase, ASL, ASS, CPS1, NAGS, OTC) or the two transporters (ORNT1 or citrin). Seventy-one patients were included (68% female, 32% male). The diagnosis was made in the context of (a) a metabolic decompensation (42%), (b) family history (55%), or (c) chronic symptoms (3%). The median age at diagnosis was 33 years (range 16-86). Eighty-nine percent of patients were diagnosed with OTC deficiency, 7% CPS1 deficiency, 3% HHH syndrome and 1% argininosuccinic aciduria. For those diagnosed during decompensations (including 23 OTC cases, mostly female), 89% required an admission in intensive care units. Seven deaths were attributed to UCD-6 decompensations and 1 epilepsy secondary to inaugural decompensation. This is the largest cohort of UCDs diagnosed in adulthood, which confirms the triad of neurol., gastrointestinal and psychiatric symptoms during hyperammonemic decompensations. We stress that females with OTC deficiency can be symptomatic. With 10% of deaths in this cohort, UCDs in adults remain a life-threatening condition. Physicians working in adult care must be aware of late-onset presentations given the implications for patients and their families.

Synthetic Route of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tong, Liangliang team published research in International Journal of Hydrogen Energy in 2022 | 1722-12-9

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Product Details of C4H3ClN2.

Tong, Liangliang;Song, Xinluo;Jiang, Yuxin;Zhao, Bangyao;Li, Yafeng research published 《 Efficiently catalytic transfer hydrogenation of aryl and heteroaryl halides by ultrafine palladium nanoparticles confined into UiO-66》, the research content is summarized as follows. The hydrodehalogenation of aryl and heteroaryl halides (AHHs) is very crucial for academic and industrial applications. Herein, ultrafine palladium nanoparticles (Pd NPs) with the size distribution about 1.77 ± 0.35 nm, were in-situ synthesized and confined into the metal-organic framework of UiO-66 (named as Pd@UiO-66) by impregnation reduction method without tedious post-reducing step. Pd@UiO-66 shows excellent activity with a high conversion (>90%) efficiency in the catalytic transfer hydrogenation (CTH) of AHHs under mild water systems utilizing ammonium formate as hydrogen donor. Furthermore, Pd@UiO-66 maintains highly excellent stability (conversion >95%) after 5 times reused cycles without losing catalytic activity and leaching Pd nanoparticles. This study supplies a new method for hybrid catalysts by immobilizing ultrafine Pd nanoparticles into crystalline MOFs, displaying efficient transform performance for halogen compounds by catalytic hydrogenation.

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tong, Lexian team published research in Journal of Medicinal Chemistry in 2022 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Recommanded Product: Pyrimidin-2-amine

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Recommanded Product: Pyrimidin-2-amine.

Tong, Lexian;Wang, Peipei;Li, Xuemei;Dong, Xiaowu;Hu, Xiaobei;Wang, Chang;Liu, Tao;Li, Jia;Zhou, Yubo research published 《 Identification of 2-Aminopyrimidine Derivatives as FLT3 Kinase Inhibitors with High Selectivity over c-KIT》, the research content is summarized as follows. Herein, we report two promising compounds 30 and 36 possessing nanomolar FLT3 inhibitory activities (IC50 = 1.5-7.2 nM), high selectivity over c-KIT (>1000-fold), and excellent anti-AML activity (MV4-11 IC50 = 0.8-3.2 nM). Furthermore, these two compounds efficiently inhibited the growth of multiple mutant BaF3 cells expressing FLT3-ITD, FLT3-D835V/F, FLT3-F691L, FLT3-ITD-F691L, and FLT3-ITD-D835Y. Oral administration of 30 and 36 at 6 mg/kg/d could significantly suppress tumor growth in the MV4-11 cell-inoculated xenograft model, exhibiting tumor growth inhibitory rates of 83.5% and 95.1%, resp. Importantly, 36 could prolong the mouse survival time in the FLT3-ITD-TKD dual mutation syngeneic mouse model (BaF3-FLT3-ITD-D835Y) at a dose of 6 mg/kg p.o. bid/4W. No clear myelosuppression was observed in the treated group of 36 in the MPO strain of zebrafish, even at 10 μM. In summary, our data demonstrated that 36 may represent a promising candidate for the treatment of FLT3 mutant AML.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Recommanded Product: Pyrimidin-2-amine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia