Vogt, Guenter team published research in Science of Nature in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Computed Properties of 554-01-8

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Computed Properties of 554-01-8.

Vogt, Guenter research published 《 Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates》, the research content is summarized as follows. A review. Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-yr-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphol., behavioral and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined anal. of phenotypic traits and DNA methylation across multiple biol. contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Computed Properties of 554-01-8

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Vijeta, Arjun team published research in Angewandte Chemie, International Edition in 2022 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Category: pyrimidines

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Category: pyrimidines.

Vijeta, Arjun;Casadevall, Carla;Reisner, Erwin research published 《 An Integrated Carbon Nitride-Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide》, the research content is summarized as follows. A photocatalytic protocol for the selective synthesis of primary anilines RNH2 [R = Ph, 4-BrC6H4, 3-pyridyl, etc.] via cross-coupling of a wide range of aryl/heteroaryl halides with sodium azide using a photocatalyst powder consisting of nickel(II) deposited on mesoporous carbon nitride (Ni-mpg-CNx) was reported. This heterogeneous photocatalyst contained a high surface area with a visible light-absorbing and adaptive “built-in” solid-state ligand for the integrated catalytic Ni site. The method displayed a high functional group tolerance, required mild reaction conditions, and benefited from easy recovery and reuse of the photocatalyst powder. Thereby, it overcame the need of complex ligand scaffolds required in homogeneous catalysis, precious metals and elevated temperatures/pressures in existing protocols of primary anilines synthesis. The reported heterogeneous Ni-mpg-CNx held potential for applications in the academic and industrial synthesis of anilines and exploration of other photocatalytic transformations.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Vazquez, Juan Luis team published research in Physical Chemistry Chemical Physics in 2021 | 109-12-6

Quality Control of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Quality Control of 109-12-6.

Vazquez, Juan Luis;Velazco-Cabral, Ivan;Alvarado-Mendez, Edgar;Trejo-Duran, Monica;Flores-Alamo, Marcos;Pena-Cabrera, Eduardo;Garcia-Revilla, Marco A.;Vazquez, Miguel A. research published 《 Effect of the substituents of new coumarin-imidazo[1,2-a]heterocyclic-3-acrylate derivatives on nonlinear optical properties: a combined experimental-theoretical approach》, the research content is summarized as follows. A series of new coumarin-imidazo[1,2-a]heterocyclic-3-acrylate derivatives were synthesized by the Heck reaction between the corresponding 3-(imidazo[1,2-a]pyrimidines)-(2-yl)-2H-chromenones and Me acrylate in 45-87% yields. The effect of the distinct substituents on third-order nonlinear optical properties was examined, exptl. measuring their nonlinear refractive indexes by the Z-scan technique. D. functional theory (DFT) and time-dependent DFT were utilized with the B3LYP, CAM-B3LYP, PBE (PBEPBE), and M062X functionals on Gaussian09 software to calculate the vertical excitation, relaxation of the brightest excited states, conformation, HOMO-LUMO gaps, oscillator strength, polarizability, and hyperpolarizabilities of all derivatives The acrylates showed a nonlinear response at a certain level of power, the compounds bearing a diethylamino electron-donating group exhibited higher nonlinear refractive index values (~10-9 cm2 W-1), which is in agreement with the trend in the computational calculations of the first and second hyperpolarization. According to the structural anal., the electron-withdrawing group (acrylate) is mainly responsible for the loss of coplanarity because of increasing the dihedral angle between the coumarin and imidazo[1,2-a]heterocyclic moieties (to 39.1°). The unsubstituted 7-(diethylamino)-3-(imidazo[1,2-a]pyridin-2-yl)-2H-chromen-2-one presented the greatest nonlinearity due to its almost coplanar structure (n2~10-8 cm2 W-1), highlighting the importance of this feature.

Quality Control of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Varun, Begur Vasanthkumar team published research in Nature Communications in 2020 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Synthetic Route of 1722-12-9

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Synthetic Route of 1722-12-9.

Varun, Begur Vasanthkumar;Vaithegi, Kannan;Yi, Sihyeong;Park, Seung Bum research published 《 Nature-inspired remodeling of (aza)indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B3 to (hetero)arylamines》, the research content is summarized as follows. The development of a strategy for the synthesis of meta-aminoaryl nicotinates from 3-formyl(aza)indoles was reported. The strategy was mechanistically different from the reported routes and involved the transformation of (aza)indole scaffolds into substituted meta-aminobiaryl scaffolds via Aldol-type addition and intramol. cyclization followed by C-N bond cleavage and re-aromatization. Unlike previous synthetic routes, this biomimetic method utilizes propiolates as enamine precursors and thus allows access to ortho-unsubstituted nicotinates. In addition, the synthetic feasibility toward the halo-/boronic ester-substituted aminobiaryls clearly differentiates the present strategy from other cross-coupling strategies. Most importantly, our method enables the late-stage conjugation of bioactive (hetero)arylamines with nicotinates and nicotinamides and allowed access to the previously unexplored chem. space for biomedical research.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Synthetic Route of 1722-12-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Varma, Sreejith Jayasree team published research in eLife in 2022 | 554-01-8

Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one.

Varma, Sreejith Jayasree;Calvani, Enrica;Grüning, Nana-Maria;Messner, Christoph B;Grayson, Nicholas;Capuano, Floriana;Mülleder, Michael;Ralser, Markus research published 《 Global analysis of cytosine and adenine DNA modifications across the tree of life.》, the research content is summarized as follows. Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.

Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Valdo, Ana Karoline Silva Mendanha team published research in Journal of Molecular Structure in 2022 | 109-12-6

Reference of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Reference of 109-12-6.

Valdo, Ana Karoline Silva Mendanha;de Santana, Ricardo Costa;Maia, Lauro June Queiroz;Guimaraes, Freddy Fernandes;Guedes, Guilherme P.;Martins, Felipe Terra research published 《 Inspecting the role of synthons in the electronic transition of N-heterocyclic compounds》, the research content is summarized as follows. Intermol. H bonding patterns allow one to draw a direct correlation between crystal structure and solid-state properties. To shed more light into the correlation between intermol. patterns (e.g., synthons) and optical properties, here the authors prepared 8 new crystal forms of template N-heterocyclic compounds Their synthons were inspected in full detail, as well as the direct band gap of the electronic transitions were determined from their diffuse reflectance spectra and theor. calculated using TD-DFT. The authors could find a direct correlation between the synthons strength and the agreement between the theor. and the exptl. electronic transitions, evidencing an important role of the synthons in the electronic transition profile of N-heterocyclic compounds

Reference of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Utepova, Irina A. team published research in Tetrahedron in 2020 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application of C4H3BrN2

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H3BrN2.

Utepova, Irina A.;Nemytov, Alexey I.;Ishkhanian, Victoria A.;Chupakhin, Oleg N.;Charushin, Valery N. research published 《 Metal-free C-H/C-H coupling of 1,3-diazines and 1,2,4-triazines with 2-naphthols facilitated by Bronsted acids》, the research content is summarized as follows. One-pot protocol metal-free oxidative C-H/C-H coupling of azines with 2-naphthols facilitated by a Bronsted acid has been developed. The method affords the corresponding azinylnaphthols, a basic scaffold of atropisomeric catalysts for asym. synthesis and fluorophores. The advantages of the proposed protocol include mild reaction conditions, high regio- and chemoselectivity and scalability.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application of C4H3BrN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Uludag, Nesimi team published research in Journal of Molecular Structure in 2022 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Electric Literature of 1722-12-9

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Electric Literature of 1722-12-9.

Uludag, Nesimi;Serdaroglu, Goncagul research published 《 An efficient studies on C-2 cyanomethylation of the indole synthesis: The electronic and spectroscopic characterization (FT-IR, NMR, UV-Vis), antioxidant activity, and theoretical calculations》, the research content is summarized as follows. The direct cynamethylation with the development of catalyzed methodologies directed to 2-(cyanomethyl)indoles was reported by using tetrafluoro-1,4-benzoquinone (TFB) as the catalyst and it was synthesized in one step without protecting the indole N-H. Due to the plenty of synthesis indole moieties is currently the object of extensive investigations due to their biol. interesting role as the recognized block in many natural products and bioactive products. The antioxidant activity of the intermediates and the final product was explored by the DPPH method, and the results disclosed that the intermediate 2-((1-pyrimidin-2-yl)-1H-indol-2-yl)acetonitrile and the final product could be used as promising agents in biomedicinal research. The structural and physicochem. properties of the intermediate and product indoles were enlightened by DFT calculations at B3LYP/6-311G(d,p) level, in the gas, CHCl3, methanol, and water environments. The TD-DFT calculations at the same level of theory were performed to compare with the recorded spectra of the studied compounds and to illuminate the possible electronic transitions (s0→ sn) underlying the observed peaks. The NBO analyses of the compounds indicated that the n→ π* and π→ π* interactions were a great portion of the lowering of the stabilization energy. The FMO analyses displayed that the intermediates and product, but the intermediate R2a mostly in all solvents, tended the electrodonating capability to the external mol. system.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Electric Literature of 1722-12-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tyler, Jasper L. team published research in Angewandte Chemie, International Edition in 2022 | 1722-12-9

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H3ClN2.

Tyler, Jasper L.;Noble, Adam;Aggarwal, Varinder K. research published 《 Strain-Release-Driven Friedel-Crafts Spirocyclization of Azabicyclo[1.1.0]butanes》, the research content is summarized as follows. The strain-release-driven Friedel-Crafts spirocyclization of azabicyclo[1.1.0]butane-tethered (hetero)aryls I (R = H, Me, Bn, allyl, triethylsilyl; R1 = Ph, 2-naphthyl, benzothiophen-2-yl, etc.) for the synthesis of a unique library of azetidine spiro-tetralins e.g., II was reported. The reaction was discovered to proceed through an unexpected interrupted Friedel-Crafts mechanism, generating a highly complex azabicyclo[2.1.1]hexane scaffold. This dearomatized intermediate, formed exclusively as a single diastereomer, can be subsequently converted to the Friedel-Crafts product upon electrophilic activation of the tertiary amine, or trapped as a Diels-Alder adduct in one-pot. The rapid assembly of mol. complexity demonstrated in these reactions highlights the potential of the strain-release-driven spirocyclization strategy to be utilized in the synthesis of medicinally relevant scaffolds.

Application of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Tu, Deshuang team published research in Journal of the American Chemical Society in 2021 | 1722-12-9

Application In Synthesis of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application In Synthesis of 1722-12-9.

Tu, Deshuang;Zhang, Jianyu;Zhang, Yunxiao;Sung, Herman H. Y.;Liu, Lijie;Kwok, Ryan T. K.;Lam, Jacky W. Y.;Williams, Ian D.;Yan, Hong;Tang, Ben Zhong research published 《 How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?》, the research content is summarized as follows. Mol. motions are essential natures of matter and play important roles in their structures and properties. However, owing to the diversity and complexity of structures and behaviors, the study of motion-structure-property relationships remains a challenge, especially at all levels of structural hierarchy from mols. to macro-objects. Herein, luminogens showing aggregation-induced emission (AIE), namely, 9-(pyrimidin-2-yl)-carbazole (PyCz) and 9-(5-R-pyrimidin-2-yl)-carbazole [R = Cl (ClPyCz), Br (BrPyCz), and CN (CyPyCz)], were designed and synthesized, to decipher the dependence of materials’ structures and properties on mol. motions at the mol. and aggregate levels. Exptl. and theor. anal. demonstrated that the active intramol. motions in the excited state of all mols. at the single-mol. level endowed them with more twisted structural conformations and weak emission. However, owing to the restriction of intramol. motions in the nano/macroaggregate state, all the mols. assumed less twisted conformations with bright emission. Unexpectedly, intermol. motions could be activated in the macrocrystals of ClPyCz, BrPyCz, and CyPyCz through the introduction of external perturbations, and synergic strong and weak intermol. interactions allowed their crystals to undergo reversible deformation, which effectively solved the problem of the brittleness of organic crystals, while endowing them with excellent elastic performance. Thus, the present study provided insights on the motion-structure-property relationship at each level of structural hierarchy and offered a paradigm to rationally design multifunctional AIE-based materials.

Application In Synthesis of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia