Noro, Shin-ichiro team published research in Inorganic Chemistry in 2021 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Application of C4H5N3

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H5N3.

Noro, Shin-ichiro;Meng, Yu;Suzuki, Kazushige;Sugiura, Minori;Hijikata, Yuh;Pirillo, Jenny;Zheng, Xin;Takahashi, Kiyonori;Nakamura, Takayoshi research published 《 A Temporarily Pore-Openable Porous Coordination Polymer for Guest Adsorption/Desorption》, the research content is summarized as follows. Flexible porous coordination polymers (PCPs)/metal-organic frameworks are unique materials that have potential applications as components of highly efficient separation, sensor, and actuator systems. In general, the structures of flexible PCPs drastically change upon guest loading. In this investigation, authors uncovered the rare one-dimensional PCP [Cu2(bza)4(2-apyr)] (1; bza = benzoate and 2-apyr = 2-aminopyrimidine), which exhibits a unique type of flexibility involving temporary pore opening. Single-crystal x-ray diffraction anal. revealed that desolvated 1 and Et acetate (AcOEt)-loaded (1·AcOEt) and CO2-loaded (1·CO2) 1 have isolated pores. In the case of 1, the pore structure prevents guest penetration. In addition, the isolated pore structures of 1·AcOEt and 1·CO2 block guest release. However, 1 participates in reversible adsorption/desorption of AcOEt and CO2 because pore opening occurs temporarily. The CO2 adsorption/desorption isotherms of 1 are type I and dissimilar to those observed in traditional flexible PCPs with adsorption/desorption hysteresis. The lesser conventional flexibility displayed by 1 could offer new insight into the design of flexible PCPs.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Application of C4H5N3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Noro, Fabrizia team published research in European Journal of Nutrition in 2022 | 554-01-8

Safety of 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Safety of 4-Amino-5-methylpyrimidin-2(1H)-one.

Noro, Fabrizia;Marotta, Annalisa;Bonaccio, Marialaura;Costanzo, Simona;Santonastaso, Federica;Orlandi, Sabatino;Tirozzi, Alfonsina;Parisi, Roberta;De Curtis, Amalia;Persichillo, Mariarosaria;Gianfagna, Francesco;Di Castelnuovo, Augusto;Donati, Maria Benedetta;Cerletti, Chiara;de Gaetano, Giovanni;Iacoviello, Licia;Gialluisi, Alessandro;Izzi, Benedetta;Moli-sani Study Investigators research published 《 Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns》, the research content is summarized as follows. Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive anal. of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and anal. of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 mo before enrolment was assessed using the semi-quant. EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.

Safety of 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ni, Shengjun team published research in Angewandte Chemie, International Edition in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., COA of Formula: C4H3ClN2

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. COA of Formula: C4H3ClN2.

Ni, Shengjun;Hribersek, Matic;Baddigam, Swarna K.;Ingner, Fredric J. L.;Orthaber, Andreas;Gates, Paul J.;Pilarski, Lukasz T. research published 《 Mechanochemical Solvent-Free Catalytic C-H Methylation》, the research content is summarized as follows. The mechanochem., solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biol. active compounds The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Addnl., the mechanochem. approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., COA of Formula: C4H3ClN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Nguyen, William team published research in European Journal of Medicinal Chemistry in 2020 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Safety of 5-Bromopyrimidine

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Safety of 5-Bromopyrimidine.

Nguyen, William;Jacobson, Jonathan;Jarman, Kate E.;Blackmore, Timothy R.;Sabroux, Helene Jousset;Lewin, Sharon R.;Purcell, Damian F.;Sleebs, Brad E. research published 《 Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents》, the research content is summarized as follows. Here, two strategies to further improve the activation of viral gene expression and physicochem. properties of this class was implemented. Firstly, rigidification of the central oxy-carbon linker with a variety of saturated heterocycles and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety was explored. The optimization process afforded lead compounds, imidazopyridine derivatives such as I from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The imidazopyridine derivatives from each class demonstrated potent activation of HIV gene expression in the FlpIn. FM HEK293 cellular assay (both with LTR EC50s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM resp.), but consequently activated gene expression non-specifically in the FlpIn. FM HEK293 cellular assay (CMV EC50 70 and 270 nM resp.) manifesting in cellular cytotoxicity. The lead compounds had potential for further development as novel latency reversing agents.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Safety of 5-Bromopyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Nguyen, Trinh-Trung-Duong team published research in IEEE/ACM Transactions on Computational Biology and Bioinformatics in 2022 | 554-01-8

HPLC of Formula: 554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. HPLC of Formula: 554-01-8.

Nguyen, Trinh-Trung-Duong;Tran, The-Anh;Le, Nguyen-Quoc-Khanh;Pham, Dinh-Minh;Ou, Yu-Yen research published 《 An extensive examination of discovering 5-methylcytosine sites in genome-wide DNA promoters using machine learning based approaches》, the research content is summarized as follows. It is well-known that the major reason for the rapid proliferation of cancer cells are the hypomethylation of the whole cancer genome and the hypermethylation of the promoter of particular tumor suppressor genes. Locating 5-methylcytosine (5mC) sites in promoters is therefore a crucial step in further understanding of the relationship between promoter methylation and the regulation of mRNA gene expression. High throughput identification of DNA 5mC in wet lab is still time-consuming and labor-extensive. Thus, finding the 5mC site of genome-wide DNA promoters is still an important task. We compared the effectiveness of the most popular and strong machine learning techniques namely XGBoost, Random Forest, Deep Forest, and Deep Feedforward Neural Network in predicting the 5mC sites of genome-wide DNA promoters. A feature extraction method based on k-mers embeddings learned from a language model were also applied. Overall, the performance of all the surveyed models surpassed deep learning models of the latest studies on the same dataset employing other encoding scheme. Furthermore, the best model achieved AUC scores of 0.962 on both cross-validation and independent test data. We concluded that our approach was efficient for identifying 5mC sites of promoters with high performance.

HPLC of Formula: 554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Nguyen, Kevin team published research in ACS Catalysis in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Category: pyrimidines

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Category: pyrimidines.

Nguyen, Kevin;Clement, Helen A.;Bernier, Louise;Coe, Jotham W.;Farrell, William;Helal, Christopher J.;Reese, Matthew R.;Sach, Neal W.;Lee, Jack C.;Hall, Dennis G. research published 《 Catalytic enantioselective synthesis of a cis-β-boronyl cyclobutylcarboxyester scaffold and its highly diastereoselective nickel/photoredox dual-catalyzed Csp3-Csp2 cross-coupling to access Elusive trans-β-aryl/heteroaryl cyclobutylcarboxyesters》, the research content is summarized as follows. Chiral cyclobutanes are components of numerous bioactive natural products, and consequently, they have also gained significant attention in medicinal chem. Optically enriched cyclobutylboronates can serve as valuable synthetic intermediates for the synthesis of a broad variety of chiral cyclobutanes through exploiting the versatility of the boronyl functionality. Herein, by using a high-throughput ligand screening approach, an efficient method for the asym. conjugate borylation of a cyclobutene 1-carboxyester was optimized, leading to a highly enantioenriched cis-β-boronyl cyclobutylcarboxyester scaffold (99% ee, >20:1 dr). Of the 118 ligands screened, the Naud family of phosphine-oxazoline ligands was found to be the most effective. Computational modeling of the possible preinsertion complexes shows a large preference for the π-bound Cu(I)-alkene complex where the substrate’s large benzhydryl ester occupies a relatively unhindered quadrant of the chiral ligand in a spatially tight environment that is highly specific for the cyclobutenoate substrate and imparts much lower selectivity with larger ring substrates. The cis diastereoselectivity is proposed to arise from a sterically controlled, irreversible protodecupration step. A highly diastereoselective nickel/photoredox dual-catalyzed Csp3-Csp2 cross-coupling of the corresponding trifluoroborate salt with aryl/heteroaryl bromides and cycloalkenyl nonaflates was developed, providing access to a wide diversity of trans-β-aryl/heteroaryl and cycloalkenyl cyclobutylcarboxyesters with an excellent diastereoselectivity and high retention of optical purity (91-99% ee, >20:1 dr). Azaheterocyclic halides, which are notoriously challenging substrates in Pd-catalyzed cross-coupling, are successful with this Ni/photoredox manifold. A stereoconvergent model based on steric factors is proposed for the key carbon-carbon bond forming step, leading to a high diastereoselectivity. Despite the radical nature of the cross-coupling conditions, the flanking carboxyester proved to be a reliable chirality relay group to maintain the stereochem. integrity of the organoboron intermediate. Furthermore, mild oxidation of the carbon-boron bond and extension of the catalytic asym. conjugate borylation reaction to a three-component aldol reaction with an aldehyde afford valuable enantioenriched cyclobutane products.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Neshat, Abdollah team published research in Molecular Catalysis in 2021 | 4595-59-9

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Recommanded Product: 5-Bromopyrimidine.

Neshat, Abdollah;Gholinejad, Mohammad;Ozcan, Hafize;Khosravi, Faezeh;Mobarakeh, Ali Mousavizadeh;Zaim, Omer research published 《 Suzuki coupling reactions catalyzed by Schiff base supported palladium complexes bearing the vitamin B6 cofactor》, the research content is summarized as follows. Novel Schiff bases were synthesized by condensing aromatic amines with pyridoxal-5′-phosphate and characterized by using FT-IR, 1H NMR, and 13C NMR spectroscopic techniques. The resulting Schiff bases were utilized as bidentate ligands, coordinating via imine nitrogen and phenolate oxygen atoms, to stabilize palladium ions. Aryl substituents on imine nitrogen allowed for fine tuning of the stereoelectronic properties of the Schiff bases. The catalytic activity of the selected palladium complexes was investigated in the Suzuki cross-coupling reaction of a series of aryl halides with boronic acids in H2O/EtOH (1:1). Out of four complexes investigated in the cross-coupling reactions, Pd(L8)2, bearing a methoxy substituent on aryl imine, showed the highest activity at low catalyst loading. The scope of the reaction was also investigated with 26 samples.

Recommanded Product: 5-Bromopyrimidine, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Neate, Peter G. N. team published research in Organic Letters in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Product Details of C4H3ClN2

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Product Details of C4H3ClN2.

Neate, Peter G. N.;Zhang, Bufan;Conforti, Jessica;Brennessel, William W.;Neidig, Michael L. research published 《 Dilithium Amides as a Modular Bis-Anionic Ligand Platform for Iron-Catalyzed Cross-Coupling》, the research content is summarized as follows. Dilithium amides have been developed as a bespoke and general ligand for iron-catalyzed Kumada-Tamao-Corriu cross-coupling reactions, their design taking inspiration from previous mechanistic and structural studies. They allow for the cross-coupling of alkyl Grignard reagents with sp2-hybridized electrophiles as well as aryl Grignard reagents with sp3-hybridized electrophiles. This represents a rare example of a single iron-catalyzed system effective across diverse coupling reactions without significant modification of the catalytic protocol, as well as remaining operationally simple.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Product Details of C4H3ClN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Nasresfahani, Zahra team published research in Applied Organometallic Chemistry in 2021 | 109-12-6

Synthetic Route of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Synthetic Route of 109-12-6.

Nasresfahani, Zahra;Kassaee, Mohamad Z. research published 《 Nickel-Copper bimetallic mesoporous nanoparticles: As an efficient heterogeneous catalyst for N-alkylation of amines with alcohols》, the research content is summarized as follows. A bimetallic catalyst (Ni/Cu-MCM-41) is prepared via co-condensation method. Catalytic performance of Ni/Cu-MCM-41 is probed in N-alkylation of amines with alcs. through a hydrogen autotransfer process. Noteworthy, this catalytic system appears very efficient for synthesis of a range of secondary and tertiary amines in good to excellent isolated yields. Moreover, the catalyst is successfully recovered and reused four times without notable decrease in its activity.

Synthetic Route of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Munyai, Rabelani team published research in Metabolites in 2022 | 65-86-1

Application In Synthesis of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Application In Synthesis of 65-86-1.

Munyai, Rabelani;Raletsena, Maropeng Vellry;Modise, David Mxolisi research published 《 LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water》, the research content is summarized as follows. In water-scarce areas, the reuse of (un)treated acid mine drainage (AMD) water for crop irrigation has become a requirement, but it also carries a wide range of contaminants that can elicit the synthesis of diverse metabolites necessary for the survival of the plants. There is still a paucity of studies on the impact of quicklime treated-AMD water on the metabolite synthesis of potatoes. This study examined the effect of the irrigation of two potato cultivars (Marykies and Royal cultivars) with quicklime-treated AMD water on their metabolite profiles. A greenhouse study was conducted with five exptl. treatments with different solution ratios, replicated three times in a completely randomized design. A total of 40 and 36 metabolites from Marykies and Royal cultivars which include amino acids, organic acids, and aromatic amines were identified, resp. The results revealed elevation in the abundance of metabolites under the irrigation with treated AMD water for both cultivars with subtle variations. This will provide information on the primary metabolite shifst in potato that enhance their survival and growth under AMD conditions. However, more specific data on toxicity due to AMD irrigation would be required for a refined risk assessment.

Application In Synthesis of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia