Patel, Kishan B. team published research in Journal of Biomolecular Structure and Dynamics in | 109-12-6

Application of C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Application of C4H5N3.

Patel, Kishan B.;Patel, Dushyant V.;Patel, Nirav R.;Kanhed, Ashish M.;Teli, Divya M.;Gandhi, Bhumi;Shah, Bhavik S.;Chaudhary, Bharat N.;Prajapati, Navnit K.;Patel, Kirti V.;Yadav, Mange Ram research published 《 Carbazole-based semicarbazones and hydrazones as multifunctional anti-Alzheimer agents》, the research content is summarized as follows. With the aim to combat a multi-faceted neurodegenerative Alzheimer′s disease (AD), a series of carbazole-based semicarbazide and hydrazide derivatives were designed, synthesized and assessed for their cholinesterase (ChE) inhibitory, antioxidant and biometal chelating activity. Among them, (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (62) and (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(5-chloropyridin-2-yl)hydrazinecarbothioamide (63) emerged as the premier candidates with good ChE inhibitory activitie. All the test compounds displayed excellent antioxidant activity (reduction percentage of DPPH values for compounds (62) and (63) were 85.67% and 84.49%, resp. at 100 μM concentration). Compounds (62) and (63) conferred specific copper ion chelating property in metal chelation study. Mol. docking studies of compounds (62) and (63) indicate strong interactions within the active sites of both the ChE enzymes. Besides that, these compounds also exhibited significant in silico drug-like pharmacokinetic properties. Thus, taken together, they can serve as a starting point in the designing of multifunctional ligands in pursuit of potential anti-AD agents that might further prevent the progression of ADs.Communicated by Ramaswamy H. Taken together, they can serve as a starting point in the designing of multifunctional ligands in pursuit of potential anti-AD agents that might further prevent.

Application of C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Parrilla-Doblas, J. T. team published research in DNA Repair in 2022 | 554-01-8

COA of Formula: C5H7N3O, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. COA of Formula: C5H7N3O.

Parrilla-Doblas, J. T.;Morales-Ruiz, T.;Ariza, R. R.;Martinez-Macias, M. I.;Roldan-Arjona, T. research published 《 The C-terminal domain of Arabidopsis ROS1 DNA demethylase interacts with histone H3 and is required for DNA binding and catalytic activity》, the research content is summarized as follows. Active DNA demethylation plays an important role in controlling methylation patterns in eukaryotes. In plants, the DEMETER-LIKE (DML) family of 5-methylcytosine DNA glycosylases initiates DNA demethylation through a base excision repair pathway. However, it is poorly understood how these DNA demethylases are recruited to their target loci and the role that histone marks play in this process. Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) is a representative enzyme of the DML family, whose members are uniquely characterized by a basic amino-terminal domain mediating nonspecific binding to DNA, a discontinuous catalytic domain, and a conserved carboxy-terminal domain of unknown function. Here, we show that ROS1 interacts with the N-terminal tail of H3 through its C-terminal domain. Importantly, phosphorylation at H3 Ser28, but not Ser10, abrogates ROS1 interaction with H3. Conserved residues at the C-terminal domain are not only required for H3 interaction, but also for efficient DNA binding and catalytic activity. Our findings suggest that the C-terminal domain of ROS1 may function as a histone reader module involved in recruitment of the DNA demethylase activity to specific genomic regions.

COA of Formula: C5H7N3O, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Parra-Melipan, Sebastian team published research in Molecular Catalysis in 2021 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., COA of Formula: C4H5N3

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. COA of Formula: C4H5N3.

Parra-Melipan, Sebastian;Lopez, Vicente;Moya, Sergio A.;Valdebenito, Gonzalo;Aranda, Braulio;Aguirre, Pedro research published 《 Valorization of furfural using ruthenium (II) complexes containing phosphorus-nitrogen ligands under homogeneous transfer hydrogen condition》, the research content is summarized as follows. In this paper, we report the catalytic activity of a series of ruthenium (II) complexes containing phosphorus-nitrogen bidentated (P-N) ligands in the hydrogenation of furfural via hydrogen transfer reaction using two hydrogen donor sources: 2-propanol in basic medium and formic acid under mild conditions. The results showed that all the ruthenium complexes studied are catalytically active in the hydrogenation of furfural by hydrogen transfer reaction; they showed 100% conversion with both hydrogen sources. However, selectivities towards the formation of furfuryl alc. were better when formic acid was used. It was also found that the reaction studied in a basic medium competes with the Cannizzaro reaction, obtaining furfuryl alc. and furoic acid in a 70/30 ratio; on the other hand, using formic acid as the hydrogen source yields furfuryl alc. with 100% selectivity. Although formic acid can be used as a hydrogen source successfully. The optimal substrate/acid ratio was found to be 1:1, as a higher concentration of formic acid can cause catalyst decomposition The yielded products, furfuryl alc. and furoic acid, obtained from renewable sources, have multiple applications in the organic chem. industry, replacing or complementing similar fossil-derived products.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., COA of Formula: C4H5N3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Panyard, Daniel J. team published research in Communications Biology in 2021 | 65-86-1

Name: 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Name: 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid.

Panyard, Daniel J.;Kim, Kyeong Mo;Darst, Burcu F.;Deming, Yuetiva K.;Zhong, Xiaoyuan;Wu, Yuchang;Kang, Hyunseung;Carlsson, Cynthia M.;Johnson, Sterling C.;Asthana, Sanjay;Engelman, Corinne D.;Lu, Qiongshi research published 《 Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations》, the research content is summarized as follows. The study of metabolomics and disease has enabled the discovery of new risk factors, diagnostic markers, and drug targets. For neurol. and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult to study on a large scale due to the relative complexity of the procedure needed to collect the fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic and metabolomic data to impute metabolites into large samples with genome-wide association summary statistics. We conduct a metabolome-wide, genome-wide association anal. with 338 CSF metabolites, identifying 16 genotype-metabolite associations (metabolite quant. trait loci, or mQTLs). We then build prediction models for all available CSF metabolites and test for associations with 27 neurol. and psychiatric phenotypes, identifying 19 significant CSF metabolite-phenotype associations Our results demonstrate the feasibility of MWAS to study omic data in scarce sample types.

Name: 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Pankratova, E. V. team published research in Doklady Biochemistry and Biophysics in 2021 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., SDS of cas: 109-12-6

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. SDS of cas: 109-12-6.

Pankratova, E. V.;Portseva, T. N.;Makarova, A. A.;Ilyin, Yu. V.;Stepchenko, A. G.;Georgieva, S. G. research published 《 Glycogen synthase kinase 3 Inhibitor, CHIR, Suppress Transcription of Tissue Specific POU2F1 Isoform in Burkitt Namalwa Lymphoma Cells》, the research content is summarized as follows. POU2F1 (Oct-1) is a transcription factor, the overexpression of which is found in many human malignant tumors; a significant increase in its level in cells determines the malignant potential of the tumor. POU2F1 is represented in cells by several isoforms that are transcribed from alternative promoters. In Burkitt’s B-cell lymphoma Namalwa, the concentration of tissue-specific isoform Oct-1L is several times higher than in normal B cells. We tested the potential to inhibit the transcription of individual Oct-1 isoforms using the GSK3 kinase inhibitor CHIR, an aminopyrimidine derivatives We have shown that CHIR specifically affects the expression of the tissue-specific isoform Oct-1L, significantly reducing the level of mRNA and Oct-1L protein. However, CHIR does not change the amount of mRNA and protein of the ubiquitous isoform Oct-1A in Namalwa tumor cells. The results obtained show that it is possible to develop a system for selective inhibition of Oct-1 transcription factor isoforms in human cells to suppress drug resistance of tumor cells with a high POU2F1 content.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., SDS of cas: 109-12-6

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Panigrahi, Uttam Kumar team published research in ChemistrySelect in 2021 | 109-12-6

Recommanded Product: Pyrimidin-2-amine, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Recommanded Product: Pyrimidin-2-amine.

Panigrahi, Uttam Kumar;Bhat, Venugopal T.;Ramakrishnan, Vengadesh Kumara Mangalam research published 《 Magnetically Recyclable Heterogeneous Cobalt Ferrite Catalyst for the Direct N-Alkylation of (Hetero)aryl Amines with Alcohols》, the research content is summarized as follows. Herein we report the use of spinel cobalt ferrite nanoparticles as an efficient and selective catalyst for the mono N-alkylation of aryl and hetero aryl amines with various aromatic and aliphatic alcs. Based on our experiments, the optimum condition for good to excellent yield were observed with alc. (1.0 mmol), aniline (1.2 mmol), KOH (0.5 equiv), and CoFe2O4 nanocatalyst (10 mol%) in toluene at 130°C in 24 h. Further control experiment studies revealed that the reaction does not proceed in the absence of the catalyst or a strong base. This magnetically recyclable nanocatalyst does not require any ligands and is easily synthesized at low temperature The reutilization of the recovered catalyst in a fresh reaction gave good to excellent yield. The experiment results strongly suggest a borrowing hydrogen pathway for N-alkylation under our standard conditions. The utility of these nanocatalysts was also demonstrated for the dehydrogenative synthesis of heterocycles like indole and quinolines.

Recommanded Product: Pyrimidin-2-amine, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Panigrahi, Ahwan team published research in European Journal of Organic Chemistry in 2021 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Quality Control of 109-12-6

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Quality Control of 109-12-6.

Panigrahi, Ahwan;Sharanappa Sherikar, Mahadev;Ramaiah Prabhu, Kandikere research published 《 ZnBr2 Mediated C-N Bond Formation using Cinnamyl Alcohol and 2-Amino Pyridines》, the research content is summarized as follows. A simple method for C-N bond formation is disclosed by using cinnamyl alcs. and 2-amino pyridine derivatives in the presence of stoichiometric amount of zinc bromide. This reaction works with a wide range of substrates, and is compatible with primary, secondary, and homoallylic alcs. To the best of our knowledge, this is the first report for C-N bond formation using cinnamyl alc. and 2-amino pyridines using zinc bromide as a Lewis acid.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Quality Control of 109-12-6

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Pan, Tao team published research in European Journal of Medicinal Chemistry in 2021 | 2927-71-1

Application of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4HCl2FN2.

Pan, Tao;Dan, Yanrong;Guo, Dafeng;Jiang, Junhao;Ran, Dongzhi;Zhang, Lin;Tian, Binghua;Yuan, Jianyong;Yu, Yu;Gan, Zongjie research published 《 Discovery of 2,4-pyrimidinediamine derivatives as potent dual inhibitors of ALK and HDAC》, the research content is summarized as follows. Combination of anaplastic lymphoma kinase (ALK) inhibitor with histone deacetylases (HDAC) inhibitor could exert synergistically anti-proliferative effects on ALK pos. non-small cell lung cancer (NSCLC) naive or resistant cells. In this work, we designed and synthesized a series of 2,4-pyrimidinediamine derivatives as dual ALK and HDAC inhibitors based on pharmacophore merged strategy. Among which, compound I displayed the most potent and balanced inhibitory activity against ALK (IC50 = 2.1 nM) and HDAC1 (IC50 = 7.9 nM), resp. In particular, I was also potent against the frequently observed Crizotinib-resistant ALKL1196M (IC50 = 1.7 nM) as well as the Ceritinib-resistant ALKG1202R (IC50 = 0.4 nM) mutants. In antiproliferative activity assay, I exhibited impressive activity on ALK-addicted cancer cell lines at low micromole concentrations, which was comparable to that of Crizotinib and Ceritinib. Further flow cytometric anal. indicated that I could effectively induce cell death via cell apoptosis and cell cycle arrest. Taken together, these results suggested I would be a promising lead compound for the ALK-pos. NSCLC treatment, especially the Ceritinib- or Crizotinib-resistant NSCLC.

Application of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ouyang, Jia-Sheng team published research in ACS Catalysis in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Application of C4H3ClN2

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4H3ClN2.

Ouyang, Jia-Sheng;Liu, Siqi;Pan, Bendu;Zhang, Yaqi;Liang, Hao;Chen, Bin;He, Xiaobo;Chan, Wesley Ting Kwok;Chan, Albert S. C.;Sun, Tian-Yu;Wu, Yun-Dong;Qiu, Liqin research published 《 A Bulky and Electron-Rich N-Heterocyclic Carbene Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for Buchwald-Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature》, the research content is summarized as follows. A bulky and electron-rich N-heterocyclic carbene palladium complex (SIPr)Ph2Pd(cin)Cl was synthesized and characterized. It was found to be highly efficient and versatile for the synthesis of substituted amines via coupling of different (hetero)aryl chlorides with various (hetero)aryl amines at room temperature, especially for the challenging amination of five- or six-membered ring heteroaryl chlorides with five- or six-membered ring heteroaryl amines. It was also successfully applied to the synthesis of various com. pharmaceuticals and candidate drugs or compounds with potential pharmacol. activities in high yields. All of these demonstrate its excellent catalytic efficacy in Buchwald-Hartwig amination and broad application prospects in relevant pharmaceutical preparations DFT calculations suggest that the steric-induced electronic interaction makes the ligand more electron-donating and the steric effect effectively regulates the rotation of iPr-Ph-iPr group in the catalyzed system due to the introduction of the di-Ph skeleton. Considering the electronic effect and steric effect together, the oxidative addition activation barriers by (SIPr)Ph2 and (SIPr) ligands are close to each other. The reductive elimination was the rate-determining step of (SIPr)Ph2Pd(cin)Cl-catalyzed system in the catalytic cycle, the appropriate steric hindrance of (SIPr)Ph2 ligand greatly reduces the energy barrier of this step. The perfect combination of electron-donating and steric hindrance ability of the ligand significantly improves the catalytic activity.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Application of C4H3ClN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ostrovsky, Serghei team published research in Polyhedron in 2021 | 109-12-6

Formula: C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Formula: C4H5N3.

Ostrovsky, Serghei research published 《 Magnetostructural study of four-coordinated Co(II) complexes with mixed ligand surrounding》, the research content is summarized as follows. The dependence of the zero-field splitting parameters on the structural modification of the nearest ligands surrounding in the [CoCl2L2] complexes (with L being the N-donor ligand) is studied. The modification was modeled by the variations of the NCoN and ClCoCl angles, by the rotation of the chlorido ligands with respect to other ligand groups as well as by the strength of the N-donor ligands. The found tendency was compared with the exptl. data for this type of cobalt complexes known from literature.

Formula: C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia