A new application about 120099-61-8

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Product Details of 120099-61-8. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: (S)-3-Methoxypyrrolidine, is researched, Molecular C5H11NO, CAS is 120099-61-8, about Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer-dimer interface. Author is Carney, Daniel W.; Lukesh, John C. III; Brody, Daniel M.; Brutsch, Manuela M.; Boger, Dale L..

Approaches to improving the biol. properties of natural products typically strive to modify their structures to identify the essential pharmacophore, or make functional group changes to improve biol. target affinity or functional activity, change phys. properties, enhance stability, or introduce conformational constraints. Aside from accessible semisynthetic modifications of existing functional groups, rarely does one consider using chem. synthesis to add mol. complexity to the natural product. In part, this may be attributed to the added challenge intrinsic in the synthesis of an even more complex compound Herein, we report synthetically derived, structurally more complex vinblastines inaccessible from the natural product itself that are a stunning 100-fold more active (IC50 values, 50-75 pM vs. 7 nM; HCT116), and that are now accessible because of advances in the total synthesis of the natural product. The newly discovered ultrapotent vinblastines, which may look highly unusual upon first inspection, bind tubulin with much higher affinity and likely further disrupt the tubulin head-to-tail α/β dimer-dimer interaction by virtue of the strategic placement of an added conformationally well-defined, rigid, and extended C20′ urea along the adjacent continuing protein-protein interface. In this case, the added mol. complexity was used to markedly enhance target binding and functional biol. activity (100-fold), and likely represents a general approach to improving the properties of other natural products targeting a protein-protein interaction.

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of vitamin B6 derivatives. Catalytic reduction of hydroxymethyl group substituted in pyridine ring》. Authors are Naito, Takeo; Ueno, Katsujiro.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Category: pyrimidines. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Catalytic reduction of 1.64 g. pyridoxine triacetate-HCl in 32 mL. H2O with 1 g. 10% Pd-C 1.5 h. at normal pressure of H absorbed 240 mL. H and gave 0.7 g. 3,4,6,5-Me3(OH)C5HN.HCl (I), m. 209-12°. Similarly, pyridoxine 4-Et ether HCl salt yielded 52% I, m. 210-12°. The above reaction with 1 mol absorption of H yielded 18% 4,6,3,5-Me2(HOCH2)(HO)C5HN.HCl (II), m. 250° (decomposition), and the mother liquor yielded 31% 3,6,4,5-Me2(EtOCH2)(HO)C5HN.HCl; picrate m. 138°. Catalytic reduction of 0.56 g. 6,3,4,5-Me(AcOCH2)(EtOCH2)(HO)C5HN.HCl in 20 mL. MeOH with 0.8 g. 10% Pd-C showed no absorption of H, the reduction proceeded well by addition of 20 mL. H2O and absorbed 54 mL. H in 2 h., and the product in 10% HCl heated 30 min. at 100° yielded 48.8% 3,6,4,5-Me2(EtOCH2)(HO)C5HN; picrate, m. 138°. Catalytic reduction of 3.76 g. pyridoxal oxime-HCl in 170 mL. H2O and 88 mL. 10% HCl with 4.8 g. 10% Pd-C absorbed 3050 mL. H in 20 h. and yielded 62% 3,6,4,5-Me2(HCl.H2NCH2)(HO)C5HN.HCl (III), m. 262-3° (decomposition); diacetate, C12H16O3N2, m. 176-7°; ditosylate-HCl, m. 194-5°. Catalytic reduction of 0.29 g. 6,3,4,5-Me(AcOCH2)(AcNHCH2)(AcO)C5HN in 8 mL. MeOH and 2.2 mL. 10% HCl-MeOH showed no absorption H but an addition of 10 mL. H2O absorbed 28 mL. H in 2 h. and yielded 100% diacetate of III, m. 174°. Similarly, 0.51 g. pyridoxal-HCl in 20 mL. H2O and 0.5 g. 10% Pd-C yielded 30% II, m. 246-8°. Catalytic reduction of 0.58 g. pyridoxal Et hemiacetal-HCl (IV) in 20 mL. EtOH and 0.5 g. 10% Pd-C (1 mol H absorbed) yielded 79% 6,5,3,4-Me(HO)(CH2OCH2)C5HN.HCl (V), m. 233-4°; picrate m. 186-7°. Similarly, 0.58 g. IV, 20 mL. H2O and 0.5 g. Pd-C yielded 40% II, m. 248-50°; 0.58 g. IV, 20 mL. HCl, 2.7 mL. 10% HCl and 0.5 g. Pd-C yielded 68% V, m. 225-30°. Catalytic reduction of 1.09 g. 2-HOCH2C5H4 N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 1 g. Pd-C (260 mL. H absorbed in 2 h.) yielded 90% 2-MeC5H4N (VI); picrate m. 164-5°. Similarly, 1.23 g. 2-MeOCH2C5H4N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 0.1 g. Pd-C (255 mL. H absorbed) yielded 91% 2-MeC5H4N; or, 2-AcOCH2C5H4N, in a similar way, yielded 88% 2-MeC5H4N. 2-HOCH2C5H4N.HCl (8 g.) added dropwise into 40 g. SOCl2 with cooling, refluxed 2 h., cooled, 100 mL. C6H6 added and the product filtered off gave 8.8 g. 2-ClCH2C5H4N (VII); picrate m. 146-7°. MeONa (2.72 g. Na and 55 mL. MeOH) treated dropwise with VII in 20 mL. MeOH, refluxed 1 h., the solvent removed and the residue extracted with Et2O gave 4.7 g. 2-MeOCH2C5H4N, b18 76-8°. Similarly are prepared (product, b.p./mm. and m.p. picrate given): 3-MeOCH2C5H4N, 92-4°/20, 117-18°; 4-MeOCH2C5H4N, 91-2°/19, 108-9°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chemistry Milestones Of 591-12-8

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Electric Literature of C5H6O2, and with the development of science, more effects of this compound(591-12-8) can be discovered.

Electric Literature of C5H6O2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions. Author is Newland, Mike J.; Rea, Gerard J.; Thuner, Lars P.; Henderson, Alistair P.; Golding, Bernard T.; Rickard, Andrew R.; Barnes, Ian; Wenger, John.

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atm. boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochem. processing, affecting atm. composition In this study, the photochem. of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atm. simulation chamber EUPHORE. Photochem. loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, resp. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimol. rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a mol. elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochem. removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 min, compared to >3 h for reaction with OH.

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Electric Literature of C5H6O2, and with the development of science, more effects of this compound(591-12-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Little discovery in the laboratory: a new route for 65090-78-0

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Recommanded Product: 65090-78-0, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 2-Bromo-3-methoxypropanoic acid, is researched, Molecular C4H7BrO3, CAS is 65090-78-0, about New and alternate synthesis of lacosamide with chemoenzymatic method, the main research direction is enzymic resolution racemic lacosamide; lacosamide enantiopure preparation.Recommanded Product: 65090-78-0.

Lacosamide [(R)-2-acetamido-N-benzyl-3-methoxy propionamide] 5 is a novel antiepileptic drug. Lacosamide was prepared by a chem. method with enzymic resolution of racemic lacosamide. Herein is reported an expedient four-steps enantioselective synthesis of lacosamide 5 beginning with Me 2,3-dibromo propionate 1. A new resolution process catalyzed by Novozyme 435. The products were obtained in very good yields and in a state of high purity. All the newly synthesized compounds (2-5) were characterized by their spectral (IR, 1H NMR, C13 NMR and MS) data.

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Recommanded Product: 65090-78-0, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Discovery of 591-12-8

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Related Products of 591-12-8, and with the development of science, more effects of this compound(591-12-8) can be discovered.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Catalyst-controlled regioselective nitrosocarbonyl aldol reaction of deconjugated butenolides, published in 2020-02-21, which mentions a compound: 591-12-8, mainly applied to heterofunctionalized butenolide regioselective preparation; deconjugated butenolide nitrosocarbonyl aldol, Related Products of 591-12-8.

An unprecedented regiodivergent nitrosocarbonyl aldol reaction of γ-substituted deconjugated butenolides was described. While Lewis base catalyst quinidine leveraged O-selective nitrosocarbonyl aldol reaction exclusively at the γ-position of deconjugated butenolides to produce γ-substituted-butenolides I [R = Me, n-Pr, PhCH2, etc.; R1 = t-BuO, OCH2CH=CH2, PhCH2O, 4-MeC6H4, etc.], Lewis acid catalyst Cu(OTf)2 steered the competitive N-selective nitrosocarbonyl aldol reaction at the β-position, resulting in hetero-β,γ-difunctionalized-butenolides II [R2 = Me, Ph, 4-MeC6H4CH2, PhCH2; R3 = t-Bu, PhCH2, 1-naphthyl, etc.]. Both processes were amenable to a broad range of substrates and scalable, while the latter one represented a rare example of one-pot hetero-β,γ-difunctionalization of butenolide scaffolds.

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Related Products of 591-12-8, and with the development of science, more effects of this compound(591-12-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Continuously updated synthesis method about 35621-01-3

There is still a lot of research devoted to this compound(SMILES:NC1CCNCC1.[H]Cl.[H]Cl)Computed Properties of C5H14Cl2N2, and with the development of science, more effects of this compound(35621-01-3) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Piperidin-4-amine dihydrochloride(SMILESS: NC1CCNCC1.[H]Cl.[H]Cl,cas:35621-01-3) is researched.Category: benzofurans. The article 《Polyamine Analog Regulation of NMDA MK-801 Binding: A Structure-Activity Study》 in relation to this compound, is published in Journal of Medicinal Chemistry. Let’s take a look at the latest research on this compound (cas:35621-01-3).

A series of analogs and homologs of spermine were synthesized, and their impact on MK-801 binding to the N-methyl-D-aspartate (NMDA) receptor was evaluated. These tetraamines encompass both linear and cyclic compounds The linear mols. include norspermine, N1,N11-diethylnorspermine, N1,N12-bis(2,2,2-trifluoroethyl)spermine, homospermine, and N1,N14-diethylhomospermine. The cyclic tetraamines consist of the piperidine analogs N1,N3-bis(4-piperidinyl)-1,3-diaminopropane, N1,N4-bis(4-piperidinyl)-1,4-diaminobutane, N1,N4-bis(4-piperidinylmethyl)-1,4-diaminobutane, and N1,N4-bis[2-(4-piperidinyl)ethyl]-1,4-diaminobutane and the pyridine analogs N1,N3-bis(4-pyridyl)-1,3-diaminopropane, N1,N4-bis(4-pyridyl)-1,4-diaminobutane, N1,N4-bis(4-pyridylmethyl)-1,4-diaminobutane, and N1,N4-bis[2-(4-pyridyl)ethyl]-1,4-diaminobutane. This structure-activity set makes it possible to establish the importance of charge, intercharge distance, and terminal nitrogen substitution on polyamine-regulated MK-801 binding in the NMDA channel. Four families of tetraamines are included in this set: norspermines, spermines, homospermines, and tetraazaoctadecanes. Calculations employing a SYBYL modeling program revealed that the distance between terminal nitrogens ranges between 12.62 and 19.61 Å. The tetraamines are constructed such that within families cyclics and acyclics have similar lengths but different nitrogen pKa’s and thus different protonation, or charge, states at physiol. pH. The pKa values for all nitrogens of each mol. and its protonation state at physiol. pH are described. The modifications at the terminal nitrogens include introduction of Et and β,β,β-trifluoroethyl groups and incorporation into piperidinyl or pyridyl systems. The studies clearly indicate that polyamine length, charge, and terminal nitrogen substitution have a significant effect on how the tetraamine regulates MK-801 binding to the NMDA receptor. Thus a structure-activity basis set on which future design of MK-801 agonists and antagonists can be based is now available.

There is still a lot of research devoted to this compound(SMILES:NC1CCNCC1.[H]Cl.[H]Cl)Computed Properties of C5H14Cl2N2, and with the development of science, more effects of this compound(35621-01-3) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

More research is needed about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 3-pyridinols. III. Synthesis of pyridoxine skeletons from 4-methyloxazole》. Authors are Yoshikawa, Toru; Ishikawa, Fumiyoshi; Naito, Takeo.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Pyridoxine dimethyl ether (I) and 4-deoxypyridoxine (II) were synthesized from 4-methyloxazole (III). 3-Cyano-5-hydroxy-6-methylpyridine (IV) was converted via the 4-CN derivative (V) to pyridoxine by the method of Okamoto and Tani (CA 54, 22644d). (MeOCH2CHBr)2 (5.5 g.) refluxed 1 hr. with 1.23 g. KOH in 12 cc. MeOH gave 2.2 g. MeOCH2CBr:CHCH2OMe (VI), b12 75-8°. VI (5.5 g.) and 3.5 g. CuCN heated 7 hrs. at 150° in an autoclave yielded 2.9 g. MeOCH2CH:C(CN)CH2OMe (VII), b8 84-6°. III (0.8 g.), 2.1 g. VII, 0.2 cc. H2O, and 4 cc. AcOH heated 40 hrs. at 95°, and the crude product chromatographed on Al2O3 yielded 2-methyl-4,5-bis(methoxymethyl)-3-pyridinol-HCl (VIII.HCl), m. 143-4° (iso-PrOH); picrate m. 168°. III (0.80 g.), 2.3 g. MeCH:CHCO2Et, 0.18 cc. H2O, and 3 cc. AcOH heated 20 hrs. at 90° in a sealed tube gave 0.2 g. (crude) Et 5-hydroxy-4,6-dimethylnicotinate, m. 146-8° (Me2CO). VIII (80 mg.) in 15 cc. dry tetrahydrofuran treated 72 hrs. at room temperature with 50 mg. LiAlH4 in 15 cc. dry tetrahydrofuran, and the filtered mixture acidified to pH 2 with dilute HCl and evaporated gave II.HCl, m. 255-7° (decomposition) (EtOH). IV (4.0 g.) in 90 cc. AcOH heated 1 hr. at 100° with 6 cc. 30% H2O2, treated twice with addnl. 6 cc. 30% H2O2 each time 1 and 4 hrs. gave 3.3 g. 5hydroxy-6-methylnicotinonitrile 1-oxide (IX), m. 278-80° (decomposition). IX (0.7 g.) and 0.7 g. Et2SO4 heated 2 hrs. at 100-10° gave 0.31 g. 1-ethoxy-2-methyl-3-hydroxy-5-cyanopyridinium ethosulfate, m. 129-30°. IX (0.6 g.) and 0.55 g. Me2SO4 heated 2 hrs. at 100-10°, and the resulting sirup added in 5 cc. H2O dropwise with shaking at 5-7° to 0.65 g. KCN in 8 cc. H2O and kept 1.5 hr. at room temperature gave 0.55 g. V, m. 189-90°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Why do aromatic interactions matter of compound: 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthetic and natural phellandrene.》. Authors are Kondakow, J.; Schindelmeiser, J..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Related Products of 148-51-6. Through the article, more information about this compound (cas:148-51-6) is conveyed.

[Machine Translation of Descriptors]. Carvomenthene, from carvomenthylchloride represented, became after REYCHLER into tertiary carvomenthol and over with 12 mm and 83.5-84.5° boiling. Chloride, D204; 0.932, into tertiary carvomenthene, C10H18, transferred. Boiling point 174-176°; D204; 0.811; nD = 1.45709, molecular refraction 46.23. Dibromide, under strong cooling in petroleum-ether prepared, Kp11; 130-144°. D204; 1.208, optical-inactively, separates no HBr, however alcoholic KOH supplies a hydrocarbon, from the main quantity with 175-180° with boiling D204; 0.825, nD = 1.46693, the smaller part with 180-185°. D204; 0.828, nD = 1.4673; molecular refraction 45.56. Both optical-inactive fractions color intensively raspberry red in a solution of acetic anhydride by H2SO4 and are undoubtedly different from the output hydrocarbon. Under consideration of the formation of the new hydrocarbon from carvomenthol author writes it from SEMMLER, (Ber. German Chem. Society 36. 1779; C. 1903. II. 116) for the phellandrene determined constitution without being able to prove the identity. Phellandrene from phellandrum aquaticum, boiling point 165-168°, D204; 0.844, nD = 1.47575, [α] D20 = 8° 37′. Molecular refraction a mixture of monochloride and dichloride gives 45.28, which probably contains an optical-inactive isomer, with HCl in glacial acetic acid. Monochloride, C10H17Cl, Kp11; 86°, melting point about 110° in the melted out tube, optically dextrorotatory. Dichloride, C10H18Cl2, Kp16; 122.5-125°, D204, 1.006, nD20 = 1.48516.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Related Products of 148-51-6, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Derivation of elementary reaction about 65090-78-0

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Electric Literature of C4H7BrO3, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 2-Bromo-3-methoxypropanoic acid( cas:65090-78-0 ) is researched.Electric Literature of C4H7BrO3.Jin, Shu-yun; Yu, Di-hu; Li, Yong published the article 《Study on by-products in N-benzyl-2-bromo-3-methoxypropionamide by mixed anhydride methods》 about this compound( cas:65090-78-0 ) in Huaxue Shijie. Keywords: byproduct benzyl bromo methoxypropionamide mixed anhydride. Let’s learn more about this compound (cas:65090-78-0).

N-Benzyl-2-bromo-3-methoxypropionamide was synthesized from 2-bromo-3-methoxypropionic acid by mixed anhydride methods. The main impurities were separated and analyzed. Furthermore, the mechanism of the production of the main impurities was discussed. The mol. structures of impurities were confirmed by 1 H NMR, 13C NMR, IR.

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Electric Literature of C4H7BrO3, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Synthetic Route of C8H12ClNO2, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Preparation of 3-hydroxy-5-hydroxymethyl-2,4-dimethylpyridine (4-deoxyadermine)》. Authors are Wibaut, J. P.; Uhlenbroek, J. H.; Kooijman, E. C.; Kettenes, D. K..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Synthetic Route of C8H12ClNO2. Through the article, more information about this compound (cas:148-51-6) is conveyed.

The preparation of 4-deoxyadermine (I) as described earlier (CA 38, 32849) was improved to give a total yield 15%. Ac2CH2 (25 g.) was slowly added to a refluxing solution of 21 g. NCCH2CONH2 in 150 ml. EtOH and 3 ml. piperidine to give 97% 2-hydroxy-3-cyano-4,6-dimethylpyridine (II), m. 294°, which on nitration with HNO3 (d. 1.52) in Ac2O at 45-50° gave a 5-nitro derivative (III) m. 268° in 70% yield. A mixture of 50 g. dry III and 65 g. PCl5 was treated with 30 ml. POCl3 and heated to 130°, to yield 71% 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine, m. 112-13° (EtOH), which was reduced by Pd-C in MeOH and aqueous HCl to give 70-5% 2,4-dimethyl-3-amino 5-aminomethylpyridine di-HCl salt monohydrate (IV), m. 310° (decomposition). The reaction of IV with Ba(NO2)2 and H2SO4 at 0°, and subsequent heating to 90° afforded 45% I, m. 264°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Synthetic Route of C8H12ClNO2, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia