New learning discoveries about 591-12-8

Here is just a brief introduction to this compound(591-12-8)COA of Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Molecules called Study of the Synchrotron Photoionization Oxidation of Alpha-Angelica Lactone (AAL) Initiated by O(3P) at 298, 550, and 700 K, Author is Rezaei, Golbon; Meloni, Giovanni, which mentions a compound: 591-12-8, SMILESS is O=C1OC(C)=CC1, Molecular C5H6O2, COA of Formula: C5H6O2.

In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of natural substances and have many advantages over bioethanol. In this study, the oxidation of alpha-angelica lactone initiated by ground-state at. oxygen, O(3P), was studied at 298, 550, and 700 K using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the Lawrence Berkeley National Lab (LBNL). Photoionization spectra and kinetic time traces were measured to identify the primary products. Ketene, acetaldehyde, Me vinyl ketone, methylglyoxal, di-Me glyoxal, and 5-methyl-2,4-furandione were characterized as major reaction products, with ketene being the most abundant at all three temperatures Possible reaction pathways for the formation of the observed primary products were computed using the CBS-QB3 composite method.

Here is just a brief introduction to this compound(591-12-8)COA of Formula: C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Decrypt The Mystery Of 591-12-8

Here is just a brief introduction to this compound(591-12-8)Recommanded Product: 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions.Recommanded Product: 591-12-8.

Herein, we demonstrate that quantum-sized Ru dot decorated ultra-thin anatase TiO2 nanosheets with exposed (001) facets could exhibit highly efficient catalytic activity during the conversion of levulinic acid to γ-valerolactone at room temperature The support effect has been largely attributed to the high energy of TiO2 (001) which can lead to a stronger interaction between the support and the metal. The surface of Ru/TiO2-n contains more Ru(0) and results in higher activity and selectivity.

Here is just a brief introduction to this compound(591-12-8)Recommanded Product: 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A small discovery about 591-12-8

Here is just a brief introduction to this compound(591-12-8)Application of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 591-12-8, is researched, SMILESS is O=C1OC(C)=CC1, Molecular C5H6O2Journal, Green Chemistry called One-pot direct conversion of levulinic acid into high-yield valeric acid over a highly stable bimetallic Nb-Cu/Zr-doped porous silica catalyst, Author is Karanwal, Neha; Verma, Deepak; Butolia, Paresh; Kim, Seung Min; Kim, Jaehoon, the main research direction is niobium copper zirconium silica catalyst levulinic valeric acid biofuel.Application of 591-12-8.

The direct conversion of levulinic acid (LA) to valeric biofuel is highly promising for the development of biorefineries. Herein, LA is converted into valeric acid (VA) via one-pot direct cascade conversion over non-noble metal-based Nb-doped Cu on Zr-doped porous silica (Nb-Cu/ZPS). Under mild reaction conditions (150°C and 3.0 MPa H2 for 4 h), LA was completely converted into VA in high yield (99.8%) in aqueous medium with a high turnover frequency of 0.038 h-1. The Lewis acid sites of ZPS enhanced the adsorption of LA on the catalyst surface, and both the Lewis and Bronsted acidity associated with Nb2O5 and the metallic Cu0 sites promoted catalysis of the cascade hydrogenation, ring cyclization, ring-opening, and hydrogenation reactions to produce VA from LA. The bimetallic Nb-Cu/ZPS catalyst was also effective for the conversion of VA into various valeric esters in C1-C5 alc. media. The presence of Nb2O5 effectively suppressed metal leaching and coke formation, which are serious issues in the liquid-phase conversion of highly acidic LA during the reaction. The catalyst could be used for up to five consecutive cycles with marginal loss of activity, even without catalyst re-activation.

Here is just a brief introduction to this compound(591-12-8)Application of 591-12-8, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Final Thoughts on Chemistry for 148-51-6

Here is just a brief introduction to this compound(148-51-6)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Effects of deoxpyridoxine on the formation and development of some experimental neoplasias. I. Ascites tumor in mice, published in 1971, which mentions a compound: 148-51-6, mainly applied to vitamin B6 antagonist tumor; cancer deoxypyridoxine; pyridoxine antagonist tumor, Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.

I.p. or i.m. injection of the antivitamin B6 compound 4-deoxypyridoxine-HCl (I) [148-51-6] (0.07 mg/day) did not alter either the percentage of tumor take or the survival time of mice inoculated previously or subsequently with Ehrlich ascites tumor. The mice were not kept on a vitamin B6-deficient diet.

Here is just a brief introduction to this compound(148-51-6)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 35621-01-3

Here is just a brief introduction to this compound(35621-01-3)Product Details of 35621-01-3, more information about the compound(Piperidin-4-amine dihydrochloride) is in the article, you can click the link below.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 4-aminopiperidine》. Authors are Yakhontov, L. N.; Yatsenko, S. V.; Rubtsov, M. V..The article about the compound:Piperidin-4-amine dihydrochloridecas:35621-01-3,SMILESS:NC1CCNCC1.[H]Cl.[H]Cl).Product Details of 35621-01-3. Through the article, more information about this compound (cas:35621-01-3) is conveyed.

Hydrogenation of 4-aminopyridine in alc. HCl over Pt at room temperature and 80 atm. H gave 16.5% 4-aminopiperidine-2HCl (I), m. 331-3° (picrate m. 245°). Hydrogenation of isonicotinic hydrazide in 4% HCl over Pt at room temperature gave 76% isonipecotinic hydrazide-2HCl, m. 240-2°. This treated with NaNO2 at -5°, then concentrated, and the resulting precipitate extracted with hot EtOH gave after refluxing 6 hrs. further with concentrated HCl 35% 4-aminopiperidine, isolated as HCl salt identical with the above. Hydrogenation of isonicotinic acid-HCl in 4% HCl over Pt gave isonipecotinic acid-HCl, decompose 299°, which treated with NaN3 in the presence of H2SO4 in C6H6 at 40° gave after aqueous treatment with NaOH 66% 4-aminopiperidine, isolated as HCl salt. Isonipecotinic acid HCl salt (II) and HN3 in H2SO4 and C6H6 gave at 80° 62% 4-aminopiperidine HCl salt. Refluxing II with NaO2CH and HCO2H 3 hrs. gave 44% 1-formylisonipecotinic acid, m. 136-38°. Heating I with HCO2Na in HCONH2 7 hrs. gave after aqueous treatment 62.5% 1-formyl-4-formamidopiperidine, m. 77-9°.

Here is just a brief introduction to this compound(35621-01-3)Product Details of 35621-01-3, more information about the compound(Piperidin-4-amine dihydrochloride) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The important role of 148-51-6

Here is just a brief introduction to this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Singh, R. P.; Korytnyk, W. researched the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ).Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.They published the article 《Pyridoxine chemistry. VII. Some modifications in the 4-position of pyridoxol》 about this compound( cas:148-51-6 ) in Journal of Medicinal Chemistry. Keywords: ANTIMETABOLITES; CHEMISTRY, PHARMACEUTICAL; EXPERIMENTAL LAB STUDY; PHARMACOLOGY; PYRIDINES; PYRIDOXINE; SACCHAROMYCES. We’ll tell you more about this compound (cas:148-51-6).

cf. preceding abstract Derivatives of I were prepared by treatment of 2,2,8-trimethyl-4H-m-dioxino[4,5-c]pyridine-5-methanol benzoate with HCl. I (R = OH) refluxed with SOCl2 and the residue treated with EtOH produced I (R = Cl). The catalytic (C) hydrogenation of I (R = Cl) afforded I (R = H). I (R = H) refluxed in KOH gave 4-deoxypyridoxine (II). I (R = Cl) stirred with Na2S2O5 produced I (R = SO3H). KCNS refluxed with I (R = Cl) gave I (R = SCN). Similarly, I (R = Cl) stirred with NaHS gave I (R = SH). I (R = H) was as active and I (R = SO3H) one-half as active as II in depressing lymphocyte count in rats fed a pyridoxine deficient diet, while the other reported derivatives were inactive. None of the other compounds inhibited the growth of Saccharomyces carlsbergensis. Cf. Schmidt, and Giesselmann, CA 58, 1429d.

Here is just a brief introduction to this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Now Is The Time For You To Know The Truth About 591-12-8

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Computed Properties of C5H6O2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Access to chiral γ-butenolides via palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes. Author is Dai, Zhen-Yao; Wang, Pu-Sheng; Gong, Liu-Zhu.

Allylic C-H alkylation of 1,4-pentadienes with α-angelica lactones has been developed by tri-axial phosphoramidite-palladium catalysis. This reaction can tolerate a range of functional groups under mild conditions, furnishing versatile chiral γ,γ-disubstituted butenolides I (R = Me, i-Pr, Cy, etc.; Ar = C6H5, 4-MeC6H4, 4-FC6H4, etc.) in high yields with good to high levels of stereoselectivity.

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chemical Properties and Facts of 148-51-6

Here is just a brief introduction to this compound(148-51-6)Application of 148-51-6, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Application of 148-51-6. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Anticoccidal agents. IV. Modification at the 5-position of 4-deoxypyridoxol and α4-norpyridoxol.

In an attempt to relate structure to anticoccidial activity, a number of 5-modified analogs of 4-deoxypyridoxol (I) and α4-norpyridoxol (II) have been synthesized and their biol. activities examined The compounds prepared include the 5-(3-hydroxypropyl), 5-(2-hydroxyethyl), 5-(1-hydroxyethyl), formyl and acetyl analogs of I, and 5-(3-hydroxypropyl), formyl, ethoxycarbonyl, carbamoyl and hydroxyl analogs of II. Among these compounds, 4-deoxyisopyridoxal (III) and α4-norisopyridoxal (IV) exhibited anticoccidil activity.

Here is just a brief introduction to this compound(148-51-6)Application of 148-51-6, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 591-12-8

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 591-12-8, is researched, Molecular C5H6O2, about The β-carotene-oxygen copolymer: Its relationship to apocarotenoids and β-carotene function, the main research direction is beta carotene oxygen copolymer preparation chem breakdown apocarotenoid preparation.Computed Properties of C5H6O2.

β-Carotene spontaneously copolymerizes with mol. oxygen to form a β-carotene-oxygen copolymer compound (“”copolymer””) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene-oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunol. activities, some of which are derived from the copolymer. However, the copolymer’s chem. makeup is unknown. A chem. breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. GC-MS anal. with mass-spectral library matching identified a min. of 45 structures, while more than 90 others remain unassigned. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are glyoxal and Me glyoxal dialdehydes, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration, Me glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given that the copolymer occurs naturally and is a major product of non-enzymic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites, the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals, the copolymer may serve as a systemic source of apocarotenoids.

Here is just a brief introduction to this compound(591-12-8)Computed Properties of C5H6O2, more information about the compound(5-Methylfuran-2(3H)-one) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Application of 148-51-6

Here is just a brief introduction to this compound(148-51-6)Related Products of 148-51-6, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Khimiko-Farmatsevticheskii Zhurnal called Amino derivatives of pyridoxine and its analogs, Author is Yakovleva, N. L.; Balyakina, M. V.; Gunar, V. I., which mentions a compound: 148-51-6, SMILESS is OC1=C(C)C(CO)=CN=C1C.[H]Cl, Molecular C8H12ClNO2, Related Products of 148-51-6.

Treatment of pyridines I (R = OH, R1 = Me, R2 = CH2OH (II); RR1 = OCMe2CH2O, R2 = CH2OH; R = OH, R1 = CH2OH, R2 = Me) with OP(NMe2)3 gave III (R = OH, R1 = Me, R2 = CH2NMe2 (IV); R = OH, R1 = CH2OH, R2 = CH2NMe2; R = OH, R1 = CH2 NMe2, R2 = Me). Heating II with SOCl2 gave I (R = OH, R1 = Me, R2 = CH2Cl), which was transformed to IV by reaction with Me2NH. Reaction of I (R3 = Cl) with HNMe2 gave I (R3 = NMe2).

Here is just a brief introduction to this compound(148-51-6)Related Products of 148-51-6, more information about the compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is in the article, you can click the link below.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia